A NEW APPROXIMATE SOLUTION TECHNIQUE FOR RANDOMLY EXCITED NON-LINEAR OSCILLATORS

被引:75
作者
CAI, GQ
LIN, YK
机构
关键词
D O I
10.1016/0020-7462(88)90038-8
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
引用
收藏
页码:409 / 420
页数:12
相关论文
共 24 条
[1]  
ANDRONOV A., 1933, J EXP THEORETICAL PH, V3, P165
[2]  
ARIARATNAM ST, 1980, NEW APPROACHES NONLI, P470
[3]   APPROXIMATE ANALYSIS OF NONLINEAR STOCHASTIC SYSTEMS [J].
ASSAF, SA ;
ZIRKLE, LD .
INTERNATIONAL JOURNAL OF CONTROL, 1976, 23 (04) :477-492
[4]   GENERALIZATION OF THE EQUIVALENT LINEARIZATION METHOD FOR NONLINEAR RANDOM VIBRATION PROBLEMS [J].
BRUCKNER, A ;
LIN, YK .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1987, 22 (03) :227-235
[5]  
CAUGHEY TK, 1964, P C INT CTR NATIONAL, V148, P392
[6]  
CAUGHEY TK, 1986, J PROBABILISTIC MECH, V1, P2
[7]  
CAUGHEY TK, 1983, INT J NONLINEAR MECH, V17, P137
[9]   AN EXACT SOLUTION TO A CERTAIN NON-LINEAR RANDOM VIBRATION PROBLEM [J].
DIMENTBERG, MF .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1982, 17 (04) :231-236
[10]   STOCHASTIC RESPONSE OF NONLINEAR DYNAMIC-SYSTEMS BASED ON A NON-GAUSSIAN CLOSURE [J].
IBRAHIM, RA ;
SOUNDARARAJAN, A ;
HEO, H .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1985, 52 (04) :965-970