REACTION KINETIC-MODEL FOR OPTIMAL PYROLYSIS OF PLASTIC WASTE MIXTURES

被引:28
作者
KOO, JK
KIM, SW
机构
[1] Environmental Systems Research Laboratory, Department of Civil Engineering, Korea Advanced Institute of Science and Technology, 373-1 KooSung Dong, YooSung Ku, Taejon
关键词
PYROLYSIS OF POLYETHYLENE AND POLYSTYRENE; PLASTIC WASTE KINETIC MODEL; TEMPERATURE EFFECT; MIXING EFFECT; OPTIMAL PYROLYSIS PROCESS; KOREA;
D O I
10.1006/wmre.1993.1054
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Reaction kinetics at various temperatures for pyrolysis of mixtures of plastic waste [polyethylene(PE) and polystyrene(PS)] are modelled in terms of five types of pyrolysis reaction. The model development is based on the assumption that as plastic wastes are heated in a non-reactive environment they are decomposed homogeneously to various products of gas, oil and char by a first-order rate, irreversible reaction and isothermal condition. Among the five models, the type II model in which the activated polymer exists as an intermediate product is the most accurate in predicting the pyrolysis products of pure PE or pure PS. Also, for mixtures of plastics both type II and IV models can be used to explain the composition of pyrolysis products. Furthermore, from the analysis of variance (ANOVA), the mixing ratio and temperature are shown to be the parameters that have the greatest effect on the pyrolysis reaction of polymer waste mixture. The pyrolysis reaction time for the maximum oil production from PE-PS mixtures is shorter than for PE alone and approaches that of PS alone. Oil production increases with increase of PS content. The optimal temperature for maximum oil production is 600°C for the pyrolysis of 2:8, 5:5 and 1:0 mixtures (w/w) of PE and PS. Oil production for PS alone is constant when the pyrolysis is above 600°C.
引用
收藏
页码:515 / 529
页数:15
相关论文
empty
未找到相关数据