JACOBI AND GAUSS-SEIDEL METHODS FOR NONLINEAR NETWORK PROBLEMS

被引:17
作者
PORSCHIN.TA
机构
关键词
D O I
10.1137/0706039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Study of two numerical methods for determining equilibrium flows in a network. They are defined in terms of the state variables of the network and it is these latter quantities which are determined. The networks are called nonlinear because the relationships which define the flows as fundtions of the state variables need not be linear.
引用
收藏
页码:437 / &
相关论文
共 21 条
  • [1] ALBRECHT J, 1962, NUMER MATH, V4, P196
  • [2] BECKENBACH EF, 1964, APPLIED COMBINATORIA
  • [3] Berge C., 1962, THEORY GRAPHS ITS AP
  • [4] BINDER RC, 1962, FLUID MECHANICS
  • [5] BIRKHOFF G, 1966, P S GENERALIZED NETW, V16
  • [6] BIRKHOFF G, 1965, Q APPL MATH, V13, P431
  • [7] BIRKHOFF G, 1963, Q APPL MATH, V21, P160
  • [8] Brayton R., 1964, Q APPL MATH, V22, P81, DOI DOI 10.1090/QAM/169747
  • [9] Brayton R. K., 1964, Q APPL MATH, V22, P1, DOI DOI 10.1090/QAM/169746
  • [10] NONLINEAR NETWORKS .2A.
    DUFFIN, RJ
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (10) : 963 - 971