FREE-ENERGY FUNCTIONALS AT THE HIGH-GRADIENT LIMIT

被引:59
作者
ROSENAU, P [1 ]
机构
[1] UNIV CALIF LOS ALAMOS SCI LAB, CTR NONLINEAR STUDIES, LOS ALAMOS, NM 87545 USA
来源
PHYSICAL REVIEW A | 1990年 / 41卷 / 04期
关键词
D O I
10.1103/PhysRevA.41.2227
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is shown that free energy functionals have a unique infinite-gradient limit which assures a finite interaction energy. This limit is used to extrapolate the Ginzburg-Landau small-gradient theory. The resulting functionals allow the existence of cusped equilibria or equilibria with sharp interfaces. If perturbed, a sharp interface will not quench immediately, but rather dissolve within a finite time. © 1990 The American Physical Society.
引用
收藏
页码:2227 / 2230
页数:4
相关论文
共 3 条
[1]  
Landau L.D., 1969, STAT PHYS, V2
[2]   EXTENSION OF LANDAU-GINZBURG FREE-ENERGY FUNCTIONALS TO HIGH-GRADIENT DOMAINS [J].
ROSENAU, P .
PHYSICAL REVIEW A, 1989, 39 (12) :6614-6617
[3]  
ROSENAU P, UNPUB