LOCAL SEARCH FOR THE ASYMMETRIC TRAVELING SALESMAN PROBLEM

被引:58
作者
KANELLAKIS, PC
PAPADIMITRIOU, CH
机构
关键词
D O I
10.1287/opre.28.5.1086
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
引用
收藏
页码:1086 / 1099
页数:14
相关论文
共 23 条
[1]  
Aho A. V., 1974, DESIGN ANAL COMPUTER
[2]  
CHRISTOFIDES N, 1976, TRGS1A CARN MELL U T
[3]   OPTIMUM BRANCHINGS [J].
EDMONDS, J .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1967, B 71 (04) :233-+
[4]  
EDMONDS J, 1065, CAN J MATH, V17, P440
[5]  
Garey M.R., 1979, COMPUTERS INTRACTABI
[6]   SEQUENCING 1 STATE-VARIABLE MACHINE - SOLVABLE CASE OF TRAVELING SALESMAN PROBLEM [J].
GILMORE, PC ;
GOMORY, RE .
OPERATIONS RESEARCH, 1964, 12 (05) :655-&
[7]   TRAVELING-SALESMAN PROBLEM AND MINIMUM SPANNING TREES [J].
HELD, M ;
KARP, RM .
OPERATIONS RESEARCH, 1970, 18 (06) :1138-&
[8]  
Held M, 1971, MATHEMATICAL PROGRAM, V1, P6, DOI [DOI 10.1007/BF01584070, 10.1007/BF01584070]
[9]  
KANELLAKIS PC, 1978, THESIS MIT CAMBRIDGE
[10]  
Karp R. M., 1977, Mathematics of Operations Research, V2, P209, DOI 10.1287/moor.2.3.209