QUASI-PERIODIC RESONANCE AND BIFURCATIONS OF TORI IN THE WEAKLY NONLINEAR DUFFING OSCILLATOR

被引:7
作者
BELOGORTSEV, AB [1 ]
机构
[1] KHARKOV STATE UNIV,DEPT RADIOPHYS,KHARKOV 310077,UKRAINE,USSR
来源
PHYSICA D | 1992年 / 59卷 / 04期
关键词
D O I
10.1016/0167-2789(92)90079-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study analytically and numerically the weakly nonlinear quasiconservative Duffing oscillator under 2-periodic forcing. Utilizing the secondary averaging approach we derive approximate analytical expressions for the quasiperiodic response of the oscillator and for conditions of torus bifurcations. The theoretical results are in good agreement with the numerical ones. The structure of the bifurcation sets in the oscillator parameter space is similar to that of a one-dimensional map with two extrema.
引用
收藏
页码:417 / 429
页数:13
相关论文
共 21 条
[1]   UNIVERSALITY AND SELF-SIMILARITY IN THE BIFURCATIONS OF CIRCLE MAPS [J].
BELAIR, J ;
GLASS, L .
PHYSICA D, 1985, 16 (02) :143-154
[2]  
Belogortsev A. B., 1988, Soviet Physics - Technical Physics, V33, P174
[3]  
BELOGORTSEV AB, 1987, SOV PHYS JETP, V65, P373
[4]  
Bogolyubov N. N., 1961, ASYMPTOTIC METHODS T
[5]  
BYATTSMITH JG, 1986, J APPL MATH, V37, P37
[6]   ON NECESSARY AND SUFFICIENT CONDITIONS FOR CHAOS TO OCCUR IN DUFFINGS EQUATION - AN HEURISTIC APPROACH [J].
DOWELL, EH ;
PEZESHKI, C .
JOURNAL OF SOUND AND VIBRATION, 1988, 121 (02) :195-200
[7]   NUMERICAL SIMULATIONS OF PERIODIC AND CHAOTIC RESPONSES IN A STABLE DUFFING SYSTEM [J].
FANG, T ;
DOWELL, EH .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1987, 22 (05) :401-425
[8]   NUMERICAL SIMULATIONS OF JUMP PHENOMENA IN STABLE DUFFING SYSTEMS [J].
FANG, T ;
DOWELL, EH .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1987, 22 (03) :267-274
[9]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[10]   ROUTES TO CHAOS IN THE DUFFING OSCILLATOR WITH A SINGLE POTENTIAL WELL [J].
KAO, YH ;
HUANG, JC ;
GOU, YS .
PHYSICS LETTERS A, 1988, 131 (02) :91-97