GENERALIZED INF-SUP CONDITIONS FOR TSCHEBYSCHEFF SPECTRAL APPROXIMATION OF THE STOKES PROBLEM

被引:125
作者
BERNARDI, C
CANUTO, C
MADAY, Y
机构
[1] CNR, IST ANAL NUMER, I-27100 PAVIA, ITALY
[2] UNIV PARIS 12, F-94010 CRETEIL, FRANCE
[3] NASA, LANGLEY RES CTR, HAMPTON, VA 23665 USA
关键词
D O I
10.1137/0725070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1237 / 1271
页数:35
相关论文
共 28 条
[1]  
Adams R.A., 2003, PURE APPL MATH SOB O, V2nd ed.
[2]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[3]   SPECTRAL APPROXIMATION OF THE PERIODIC-NONPERIODIC NAVIER-STOKES EQUATIONS [J].
BERNARDI, C ;
MADAY, Y ;
METIVET, B .
NUMERISCHE MATHEMATIK, 1987, 51 (06) :655-700
[4]  
BERNARDI C, 1987, RECH AEROSPATIALE, P1
[5]  
BERNARDI C, 1986, THESIS U P M CURIE P
[6]  
BERNARDI C, 1989, IN PRESS SIAM J NUME, V26
[7]  
BERNARDI C, 1986, ICASE8661 NASA LANGL
[8]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[9]   FINITE DIMENSIONAL APPROXIMATION OF NON-LINEAR PROBLEMS .1. BRANCHES OF NONSINGULAR SOLUTIONS [J].
BREZZI, F ;
RAPPAZ, J ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1980, 36 (01) :1-25
[10]  
CANUTO C, 1982, MATH COMPUT, V38, P67, DOI 10.1090/S0025-5718-1982-0637287-3