COLOCALIZATION OF SYNAPTOPHYSIN WITH TRANSFERRIN RECEPTORS - IMPLICATIONS FOR SYNAPTIC VESICLE BIOGENESIS

被引:279
作者
CAMERON, PL
SUDHOF, TC
JAHN, R
DECAMILLI, P
机构
[1] UNIV TEXAS, SW MED CTR, DEPT MOLEC GENET, HOWARD HUGHES MED INST, DALLAS, TX 75235 USA
[2] MAX PLANCK INST PSYCHIAT, DEPT NEUROCHEM, PLANEGG MARTINSRIED, GERMANY
关键词
D O I
10.1083/jcb.115.1.151
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We have reported previously that the synaptic vesicle (SV) protein synaptophysin, when expressed in fibroblastic CHO cells, accumulates in a population of recycling microvesicles. Based on preliminary immunofluorescence observations, we had suggested that synaptophysin is targeted to the preexisting population of microvesicles that recycle transferrin (Johnston, P. A., P. L. Cameron, H. Stukenbrok, R. Jahn, P. De Camilli, and T. C. Sudhof. 1989. EMBO (Eur. Mol. Biol. Organ.) J. 8:2863-2872). In contrast to our results, another group reported that expression of synaptophysin in cells which normally do not express SV proteins results in the generation of a novel population of microvesicles (Leube, R. E., B. Wiedenmann, and W. W. Franke. 1989. Cell. 59:433-446). We report here a series of morphological and biochemical studies conclusively demonstrating that synaptophysin and transferrin receptors are indeed colocalized on the same vesicles in transfected CHO cells. These observations prompted us to investigate whether an overlap between the distribution of the two proteins also occurs in endocrine cell lines that endogenously express synaptophysin and other SV proteins. We have found that endocrine cell lines contain two pools of membranes positive for synaptophysin and other SV proteins. One of the two pools also contains transferrin receptors and migrates faster during velocity centrifugation. The other pool is devoid of transferrin receptors and corresponds to vesicles with the same sedimentation characteristics as SVs. These findings suggest that in transfected CHO cells and in endocrine cell lines, synaptophysin follows the same endocytic pathway as transferrin receptors but that in endocrine cells, at some point along this pathway, synaptophysin is sorted away from the recycling receptors into a specialized vesicle population. Finally, using immunofluorescent analyses, we found an overlap between the distribution of synaptophysin and transferrin receptors in the dendrites of hippocampal neurons in primary cultures before synapse formation. Axons were enriched in synaptophysin immunoreactivity but did not contain detectable levels of transferrin receptor immunoreactivity. These results suggest that SVs may have evolved from, as well as coexist with, a constitutively recycling vesicular organelle found in all cells.
引用
收藏
页码:151 / 164
页数:14
相关论文
共 56 条
[1]   THE BIOLOGY AND BIOCHEMISTRY OF THE GLUCOSE TRANSPORTER [J].
BALY, DL ;
HORUK, R .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 947 (03) :571-590
[2]   RAT HIPPOCAMPAL NEURONS IN DISPERSED CELL-CULTURE [J].
BANKER, GA ;
COWAN, WM .
BRAIN RESEARCH, 1977, 126 (03) :397-425
[3]  
BARTLETT WP, 1984, J NEUROSCI, V4, P1944
[4]  
BATES GW, 1973, J BIOL CHEM, V248, P3228
[5]   P-29 - A NOVEL TYROSINE-PHOSPHORYLATED MEMBRANE-PROTEIN PRESENT IN SMALL CLEAR VESICLES OF NEURONS AND ENDOCRINE-CELLS [J].
BAUMERT, M ;
TAKEI, K ;
HARTINGER, J ;
BURGER, PM ;
VONMOLLARD, GF ;
MAYCOX, PR ;
DECAMILLI, P ;
JAHN, R .
JOURNAL OF CELL BIOLOGY, 1990, 110 (04) :1285-1294
[6]   SYNAPTOBREVIN - AN INTEGRAL MEMBRANE-PROTEIN OF 18000 DALTONS PRESENT IN SMALL SYNAPTIC VESICLES OF RAT-BRAIN [J].
BAUMERT, M ;
MAYCOX, PR ;
NAVONE, F ;
DECAMILLI, P ;
JAHN, R .
EMBO JOURNAL, 1989, 8 (02) :379-384
[7]   INSULIN, GLUCAGON, AND SOMATOSTATIN RECEPTORS ON CULTURED-CELLS AND CLONES FROM RAT ISLET CELL TUMOR [J].
BHATHENA, SJ ;
OIE, HK ;
GAZDAR, AF ;
VOYLES, NR ;
WILKINS, SD ;
RECANT, L .
DIABETES, 1982, 31 (06) :521-531
[8]   GROWTH OF A RAT NEUROBLASTOMA CELL LINE IN SERUM-FREE SUPPLEMENTED MEDIUM [J].
BOTTENSTEIN, JE ;
SATO, GH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (01) :514-517
[9]   MEMBRANE RECYCLING AND EPITHELIAL-CELL FUNCTION [J].
BROWN, D .
AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 256 (01) :F1-F12
[10]   SYNAPTIC VESICLES IMMUNOISOLATED FROM RAT CEREBRAL-CORTEX CONTAIN HIGH-LEVELS OF GLUTAMATE [J].
BURGER, PM ;
MEHL, E ;
CAMERON, PL ;
MAYCOX, PR ;
BAUMERT, M ;
LOTTSPEICH, F ;
DECAMILLI, P ;
JAHN, R .
NEURON, 1989, 3 (06) :715-720