L=LAMBDA-W - DISCOUNTED ANALOG AND A NEW PROOF

被引:29
作者
STIDHAM, S [1 ]
机构
[1] CORNELL UNIV,ITHACA,NY 14850
关键词
D O I
10.1287/opre.20.6.1115
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
引用
收藏
页码:1115 / 1126
页数:12
相关论文
共 26 条
[2]  
BROWN M, 1971, ASYMPTOTIC PROPERTIE
[3]   RELATION BETWEEN CUSTOMER AND TIME AVERAGES IN QUEUES [J].
BRUMELLE, SL .
JOURNAL OF APPLIED PROBABILITY, 1971, 8 (03) :508-&
[4]   OPTIMAL CONTROL OF A SERVICE FACILITY WITH VARIABLE EXPONENTIAL SERVICE TIMES AND CONSTANT ARRIVAL RATE [J].
CRABILL, TB .
MANAGEMENT SCIENCE SERIES A-THEORY, 1972, 18 (09) :560-566
[5]   CONTRACTION MAPPINGS IN THEORY UNDERLYING DYNAMIC PROGRAMMING [J].
DENARDO, EV .
SIAM REVIEW, 1967, 9 (02) :165-&
[6]   A SIMPLER PROOF OF L=LAMBDAW [J].
EILON, S .
OPERATIONS RESEARCH, 1969, 17 (05) :915-&
[7]  
Feller W., 1966, INTRO PROBABILITY TH, V2
[8]   A SIMPLE PROOF OF - L = LAMBDAW [J].
JEWELL, WS .
OPERATIONS RESEARCH, 1967, 15 (06) :1109-&
[9]   A PROOF FOR THE QUEUING FORMULA - L=LAMBDA-W [J].
LITTLE, JDC .
OPERATIONS RESEARCH, 1961, 9 (03) :383-387
[10]  
Loeve M., 1977, PROBABILITY THEORY