NEW QUANTUM POINCARE ALGEBRA AND KAPPA-DEFORMED FIELD-THEORY

被引:512
作者
LUKIERSKI, J [1 ]
NOWICKI, A [1 ]
RUEGG, H [1 ]
机构
[1] UNIV BORDEAUX,PHYS THEOR LAB,F-33175 GRANDIGNAN,FRANCE
关键词
D O I
10.1016/0370-2693(92)90894-A
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive a new real quantum Poincare algebra with standard real structure, obtained by contraction of U(q)(O(3, 2)) (q real), which is a standard real Hopf algebra, depending on a dimension-full parameter kappa instead of q. For our real quantum Poincare algebra both Casimirs are given. The free scalar kappa-deformed quantum field theory is considered. it appears that the kappa-parameter introduced nonlocal q-time derivatives with In q approximately 1/kappa.
引用
收藏
页码:344 / 352
页数:9
相关论文
共 26 条
  • [1] THE QUANTUM HEISENBERG-GROUP H(1)Q
    CELEGHINI, E
    GIACHETTI, R
    SORACE, E
    TARLINI, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) : 1155 - 1158
  • [2] THE 3-DIMENSIONAL EUCLIDEAN QUANTUM GROUP E(3)Q AND ITS R-MATRIX
    CELEGHINI, E
    GIACHETTI, R
    SORACE, E
    TARLINI, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) : 1159 - 1165
  • [3] CELEGHINI E, 1991, 1ST P EIMI WORKSH QU
  • [4] CELEGHINI E, DFF1511191 U FLOR PR
  • [5] DOBREV V, 1991, CANONICAL Q DEFORMAT
  • [6] Drinfeld V.G., 1989, ALGEBRA ANAL, V1, P30
  • [7] Faddeev L.D., 1989, ALGEBRA ANALIZ, P178
  • [8] MORE ABOUT THE Q-DEFORMED POINCARE ALGEBRA
    GILLER, S
    KOSINSKI, P
    MAJEWSKI, M
    MASLANKA, P
    KUNZ, J
    [J]. PHYSICS LETTERS B, 1992, 286 (1-2) : 57 - 62
  • [9] JACKSON FN, 1910, APPL MATH, V41, P143
  • [10] KOSINSKI P, COMMUNICATION