PICK THEOREM

被引:33
作者
GRUNBAUM, B [1 ]
SHEPHARD, GC [1 ]
机构
[1] UNIV E ANGLIA,NORWICH NR4 7TJ,NORFOLK,ENGLAND
关键词
D O I
10.2307/2323771
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:150 / 161
页数:12
相关论文
共 21 条
[1]  
[Anonymous], 1969, INTRO GEOMETRY
[2]   A NEW PICK-TYPE THEOREM ON THE HEXAGONAL LATTICE [J].
DING, R ;
KOLODZIEJCZYK, K ;
REAY, J .
DISCRETE MATHEMATICS, 1988, 68 (2-3) :171-177
[3]   THE BOUNDARY CHARACTERISTIC AND PICK THEOREM IN THE ARCHIMEDEAN PLANAR TILINGS [J].
REN, D ;
REAY, JR .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1987, 44 (01) :110-119
[4]   FROM EULERS-FORMULA TO PICKS-FORMULA USING AN EDGE-THEOREM [J].
FUNKENBUSCH, WW .
AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (06) :647-648
[5]   ROTATION AND WINDING NUMBERS FOR PLANAR POLYGONS AND CURVES [J].
GRUNBAUM, B ;
SHEPHARD, GC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 322 (01) :169-187
[6]  
HADWIGER H, 1976, J REINE ANGEW MATH, V280, P61
[7]  
Liu A. C. F., 1979, MATH MAG, V52, P232
[8]  
MACDONALD IG, 1963, P CAMB PHILOS SOC, V59, P719
[9]   LATTICE POINTS AND POLYGONAL AREA [J].
NIVEN, I ;
ZUCKERMA.HS .
AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (10) :1195-&
[10]  
Pick G., 1899, PRAG NEUE FOLGE, V19, P311