ON OF THE DISCRETE SPECTRUM OF THE HAMILTONIAN AN n-PARTICLE QUANTUM SYSTEM

被引:10
作者
Antonets, M. A. [1 ]
Zhislin, G. M. [1 ]
Shereshevskii, I. A. [1 ]
机构
[1] Radiophys Sci Res Inst, Moscow, Russia
关键词
D O I
10.1007/BF01037133
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Sufficient conditions are obtained for the discrete spectrum of the energy operator of an n-particle system to be finite in the space of functions of given permutational and rotational symmetry. It is shown that under the same conditions the boundary of the continuous spectrum cannot be an eigenvalue of infinite multiplicity. For application of the basic theorem, the eigenvalues of the Schrodinger operator are investigated as functions of the coupling constant.
引用
收藏
页码:800 / 809
页数:10
相关论文
共 9 条
[1]  
[Anonymous], 1965, IZV AKAD NAUK SSSR M
[2]  
BOURBAKI N, FONCTIONS VARIABLE R
[3]  
Jorgens K., 1965, WESENTLICHE SPECTRUM
[4]  
Riesz F, 1956, FUNCTIONAL ANAL
[5]  
SIGALOV AG, 1970, TEOR MAT FIZ, V5, P73, DOI 10.1007/BF01035981
[6]  
SIMON B, 1970, HELV PHYS ACTA, V43, P607
[7]  
UCHIYAMA J, 1969, PUBL RES I MATH SCI, V5, P51
[8]  
Uchiyama J, 1970, PUBL RES I MATH SCI, V6, P193
[9]  
Zhislin G.M., 1971, THEOR MATH PHYS, V7, P571, DOI [10.1007/BF01032076, DOI 10.1007/BF01032076]