Several naturally occurring aromatic ethers, of which safrole [1-allyl-3,4-(methylenedioxy)benzene] is one example, are hepatocarcinogens. One bioactivation pathway previously proposed for safrole involves hydroxylation of the benzyl carbon, conjugation with sulfate, and then alkylation of DNA with displacement of the sulfate group [Miller, J. A., and Miller, E. C. (1983) Br. J. Cancer 48, 1-15]. The fact that safrole is O-dealkylated to the corresponding catechol (hydroxychavicol, 1-allyl-3,4-dihydroxybenzene) indicates that quinoid formation is also possible and may contribute to the genotoxic and/or cytotoxic activity of this compound. In the present investigation we selectively oxidized hydroxychavicol to the corresponding o-quinone (HC-quinone, 4-allyl-3,5-cyclohexadiene-1,2-dione) or p-quinone methide (HC-QM, 2-hydroxy-4-allylidene-2,5-cyclohexadien-1-one) and trapped these reactive electrophiles with glutathione (GSH). The GSH adducts were fully characterized by UV, NMR, and mass spectrometry. Microsomal incubations with safrole or hydroxychavicol in the presence of glutathione produced only o-quinone glutathione conjugates. However, if the trapping agent (GSH) was added after an initial incubation of 10 min, both o-quinone and p-quinone methide GSH conjugates were observed. The first-order rate constant of isomerization was estimated from the decrease in HC-quinone GSH adducts to be 1.9 x 10(-3) s(-1) (t(1/2) = 9 min). Kinetic studies showed that while HC-QM reacts rapidly with water, the model o-quinone (4-tert-butyl-3,5-cyclohexadiene-1,2-dione), which cannot isomerize to a quinone methide, was remarkably resistant to hydrolysis. These results suggest that an additional bioactivation pathway for safrole could exist which may contribute to its toxic effects: initial O-dealkylation of the methylenedioxy ring forming hydroxychavicol, 2-electron oxidation to the o-quinone, and isomerization forming the more electrophilic p-quinone methide.