OUTER CONJUGACY OF SHIFTS ON THE HYPERFINITE-II-1-FACTOR

被引:10
作者
BURES, D
YIN, HS
机构
[1] Department of Mathematics, University of British Columbia, Vancouver, BC
关键词
D O I
10.2140/pjm.1990.142.245
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a shift σ on the hyperfinite II1 factor R, we define the derived shift σ∞ to be the restriction of σ to the von Neumann algebra generated by the (σk(R))' {n-ary intersection} R. Outer conjugacy of shifts implies conjugacy of derived shifts. In the case of n-shifts with n prime, we calculate σ∞ explicitly. Combining this with the known classification of n-shifts up to conjugacy, we obtain useful outer-conjugacy invariants for n-shifts. © 1990 by Pacific Journal of Mathematics.
引用
收藏
页码:245 / 257
页数:13
相关论文
共 7 条
[1]  
BURES D, 1988, J OPERAT THEOR, V20, P91
[2]  
CHODA M, 1987, J OPERAT THEOR, V17, P223
[3]  
ENOMOTO M, SOLUTION POWERS PROB
[4]   INDEX FOR SUBFACTORS [J].
JONES, VFR .
INVENTIONES MATHEMATICAE, 1983, 72 (01) :1-25
[5]  
POWERS RT, IN PRESS CANAD J MAT
[6]  
PRICE G, SHIFTS INTEGER INDEX
[7]   SHIFTS ON TYPE-II1 FACTORS [J].
PRICE, GL .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1987, 39 (02) :492-511