AN INTRODUCTION TO NONCOMMUTATIVE DIFFERENTIAL GEOMETRY ON QUANTUM GROUPS

被引:91
作者
ASCHIERI, P
CASTELLANI, L
机构
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 1993年 / 8卷 / 10期
关键词
D O I
10.1142/S0217751X93000692
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We give a pedagogical introduction to the differential calculus on quantum groups by stressing at all stages the connection with the classical case (q --> 1 limit). The Lie derivative and the contraction operator on forms and tensor fields are found. A new, explicit form of the Cartan-Maurer equations is presented. The example of a bicovariant differential calculus on the quantum group GL(q)(2) is given in detail. The softening of a quantum group is considered, and we introduce q curvatures satisfying q Bianchi identities, a basic ingredient for the construction of q gravity and q gauge theories.
引用
收藏
页码:1667 / 1706
页数:40
相关论文
empty
未找到相关数据