Landslides in West Coast metropolitan areas: The role of extreme weather events

被引:22
作者
Biasutti, Michela [1 ]
Seager, Richard [1 ]
Kirschbaum, Dalia B. [2 ]
机构
[1] Columbia Univ, Lamont Doherty Geol Observ, Palisades, NY 10964 USA
[2] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD USA
来源
WEATHER AND CLIMATE EXTREMES | 2016年 / 14卷
基金
美国国家科学基金会;
关键词
Landslides; Intense rainfall; Climate change impacts;
D O I
10.1016/j.wace.2016.11.004
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Rainfall-induced landslides represent a pervasive issue in areas where extreme rainfall intersects complex terrain. A farsighted management of landslide risk requires assessing how landslide hazard will change in coming decades and thus requires, inter alia, that we understand what rainfall events are most likely to trigger landslides and how global warming will affect the frequency of such weather events. We take advantage of 9 years of landslide occurrence data compiled by collating Google news reports and of a high-resolution satellite-based daily rainfall data to investigate what weather triggers landslide along the West Coast US. We show that, while this landslide compilation cannot provide consistent and widespread monitoring everywhere, it captures enough of the events in the major urban areas that it can be used to identify the relevant relationships between landslides and rainfall events in Puget Sound, the Bay Area, and greater Los Angeles. In all these regions, days that recorded landslides have rainfall distributions that are skewed away from dry and low-rainfall accumulations and towards heavy intensities. However, large daily accumulation is the main driver of enhanced hazard of landslides only in Puget Sound. There, landslide are often clustered in space and time and major events are primarily driven by synoptic scale variability, namely "atmospheric rivers" of high humidity air hitting anywhere along the West Coast, and the interaction of frontal system with the coastal orography. The relationship between landslide occurrences and daily rainfall is less robust in California, where antecedent precipitation (in the case of the Bay area) and the peak intensity of localized downpours at sub-daily time scales (in the case of Los Angeles) are key factors not captured by the same-day accumulations. Accordingly, we suggest that the assessment of future changes in landslide hazard for the entire the West Coast requires consideration of future changes in the occurrence and intensity of atmospheric rivers, in their duration and clustering, and in the occurrence of short-duration (sub-daily) extreme rainfall as well. Major regional landslide events, in which multiple occurrences are recorded in the catalog for the same day, are too rare to allow a statistical characterization of their triggering events, but a case study analysis indicates that a variety of synoptic-scale events can be involved, including not only atmospheric rivers but also broader cold- and warm-front precipitation. That a news-based catalog of landslides is accurate enough to allow the identification of different landslide/ rainfall relationships in the major urban areas along the US West Coast suggests that this technology can potentially be used for other English-language cities and could become an even more powerful tool if expanded to other languages and non-traditional news sources, such as social media.
引用
收藏
页码:67 / 79
页数:13
相关论文
共 46 条
[1]   A warning system for rainfall-induced shallow failures [J].
Aleotti, P .
ENGINEERING GEOLOGY, 2004, 73 (3-4) :247-265
[2]   THE RAINFALL INTENSITY - DURATION CONTROL OF SHALLOW LANDSLIDES AND DEBRIS FLOWS [J].
CAINE, N .
GEOGRAFISKA ANNALER SERIES A-PHYSICAL GEOGRAPHY, 1980, 62 (1-2) :23-27
[3]   Significant modulation of variability and projected change in California winter precipitation by extratropical cyclone activity [J].
Chang, Edmund K. M. ;
Zheng, Cheng ;
Lanigan, Patrick ;
Yau, Albert M. W. ;
Neelin, J. David .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (14) :5983-5991
[4]  
Coe JA, 2012, LANDSLIDES ENG SLOPE, P371
[5]  
Collins M., 2013, CLIMATE CHANGE 2013, P1029
[6]   Potential effects of incoming climate changes on the behaviour of slow active landslides in clay [J].
Comegna, Luca ;
Picarelli, Luciano ;
Bucchignani, Edoardo ;
Mercogliano, Paola .
LANDSLIDES, 2013, 10 (04) :373-391
[7]   Deciphering the effect of climate change on landslide activity: A review [J].
Crozier, M. J. .
GEOMORPHOLOGY, 2010, 124 (3-4) :260-267
[8]   Precipitation characteristics in eighteen coupled climate models [J].
Dai, Aiguo .
JOURNAL OF CLIMATE, 2006, 19 (18) :4605-4630
[9]   A knowledge-based approach to the statistical mapping of climate [J].
Daly, C ;
Gibson, WP ;
Taylor, GH ;
Johnson, GL ;
Pasteris, P .
CLIMATE RESEARCH, 2002, 22 (02) :99-113
[10]   Representing the Sensitivity of Convective Cloud Systems to Tropospheric Humidity in General Circulation Models [J].
Del Genio, Anthony D. .
SURVEYS IN GEOPHYSICS, 2012, 33 (3-4) :637-656