NONINVERTIBLE 2-DIMENSIONAL MAPS ARISING IN RADIOPHYSICS

被引:10
作者
MAISTRENKO, V
MAISTRENKO, Y
SUSHKO, I
机构
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1994年 / 4卷 / 02期
关键词
D O I
10.1142/S0218127494000253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a two-parameter family of noninvertible maps modeling a generator which consists of two identical nonlinear amplifiers and two delay circuits. The ratio of the delays determines the dimension of the map and our attention is mainly on the two-dimensional case. The mechanism of transition to chaos appears to be one-dimensional and is realized through a period-doubling cascade. To get a more complete description we suggest the use of so-called triangular maps. Phase portraits are constructed for some types of model triangular maps. Also we get one- and two-dimensional bifurcation diagrams for the maps considered and attractor basins in the case of multistability using computer simulation.
引用
收藏
页码:383 / 400
页数:18
相关论文
共 11 条
[1]  
Arnold V., 1986, MODERN PROBLEMS MATH, V5, P5
[2]  
Gavrilov N. K., 1977, INVESTIGATIONS STABI, P192
[3]  
Gumowski I., 1980, DYNAMIQUE CHAOTIQUE
[4]   ON DYNAMICS OF TRIANGULAR MAPS OF THE SQUARE [J].
KOLYADA, SF .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1992, 12 :749-768
[5]  
KOLYADA SF, 1991, P ECIT 89, P177
[6]  
MAISTRENKO VL, 1990, 3 INT SCH SEM NAUCHP, P96
[7]  
Mira C., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P1167, DOI 10.1016/0362-546X(80)90026-7
[8]  
NAGUMO D, 1991, P IRE, V49, P1281
[9]  
SHARKOVSKY AN, 1993, DIFFERENCE EQUATIONS, P358
[10]  
SHILNIKOV LP, 1984, PROBLEMS NONLINEAR T, P118