CONNECTION BETWEEN PERTURBATION-THEORY, PROJECTION-OPERATOR TECHNIQUES, AND STATISTICAL LINEARIZATION FOR NON-LINEAR SYSTEMS

被引:9
作者
BUDGOR, AB [1 ]
WEST, BJ [1 ]
机构
[1] PHYS DYNAM INC,LA JOLLA,CA
来源
PHYSICAL REVIEW A | 1978年 / 17卷 / 01期
关键词
D O I
10.1103/PhysRevA.17.370
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We employ the equivalence between Zwanzig's projection-operator formalism and perturbation theory to demonstrate that the approximate-solution technique of statistical linearization for nonlinear stochastic differential equations corresponds to the lowest-order truncation in both the consolidated perturbation expansions and in the mass operator" of a renormalized Green's function equation. Other consolidated equations can be obtained by selectively modifying this mass operator. We particularize the results of this paper to the Duffing anharmonic oscillator equation. © 1978 The American Physical Society."
引用
收藏
页码:370 / 376
页数:7
相关论文
共 14 条
[1]  
[Anonymous], 1961, LECT THEORETICAL PHY
[2]  
Bixon M., 1971, Journal of Statistical Physics, V3, P245, DOI 10.1007/BF01011383
[3]  
BLOCH C, 1965, STUDIES STATISTICAL, V8
[4]  
Bogoliubov N.N., 1961, ASYMTOTIC METHODS TH
[5]  
BRUECKNER KA, 1959, MANY BODY PROBLEM
[6]   STUDIES IN NONLINEAR STOCHASTIC-PROCESSES .1. APPROXIMATE SOLUTIONS OF NONLINEAR STOCHASTIC DIFFERENTIAL-EQUATIONS BY METHOD OF STATISTICAL LINEARIZATION [J].
BUDGOR, AB .
JOURNAL OF STATISTICAL PHYSICS, 1976, 15 (05) :355-374
[7]   STUDIES IN NONLINEAR STOCHASTIC-PROCESSES .2. DUFFING OSCILLATOR REVISITED [J].
BUDGOR, AB ;
LINDENBERG, K ;
SHULER, KE .
JOURNAL OF STATISTICAL PHYSICS, 1976, 15 (05) :375-391
[8]  
Frisch U., 1968, PROBABILISTIC METHOD, V1
[9]   CLASSICAL NOISE .3. NONLINEAR MARKOFF PROCESSES [J].
LAX, M .
REVIEWS OF MODERN PHYSICS, 1966, 38 (02) :359-+
[10]   STATISTICAL DYNAMICS OF CLASSICAL SYSTEMS [J].
MARTIN, PC ;
SIGGIA, ED ;
ROSE, HA .
PHYSICAL REVIEW A, 1973, 8 (01) :423-437