LOG-CONCAVITY AND COMBINATORIAL PROPERTIES OF FIBONACCI LATTICES

被引:8
作者
BRENTI, F [1 ]
机构
[1] INST MITTAG LEFFLER,S-18262 DJURSHOLM,SWEDEN
关键词
D O I
10.1016/S0195-6698(13)80097-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that two infinite families of polynomials naturally associated to Fibonacci Lattices have only real zeros and give combinatorial interpretations to these polynomials. This, in particular, implies the log-concavity of several combinatorial sequences arising from Fibonacci Lattices and generalizes a result obtained by R. Stanley. © 1991, Academic Press Limited. All rights reserved.
引用
收藏
页码:459 / 476
页数:18
相关论文
共 23 条
[1]  
Bjorner A., 1982, ORDERED SETS, P583
[2]   UNIMODAL POLYNOMIALS ARISING FROM SYMMETRIC FUNCTIONS [J].
BRENTI, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 108 (04) :1133-1141
[3]  
Brenti F., 1988, THESIS MIT
[4]  
BRENTI F, 1989, MEMOIRS AM MATH SOC, V413
[5]  
BRENTI F, UNIMODALITY EXCEDANC
[6]  
COMTET L, 1974, ADV COMBINATORICS
[7]  
EDELMAN P, 1980, THESIS MIT
[8]  
Edelman P.H., 1980, EUROPEAN J COMBINATO, V1, P335
[9]   PROOF OF A CONJECTURE OF SCHOENBERG ON THE GENERATING FUNCTION OF A TOTALLY POSITIVE SEQUENCE [J].
EDREI, A .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1953, 5 (01) :86-94
[10]  
Hardy G., 1952, MATH GAZ