ISOHOLONOMIC PROBLEMS AND SOME APPLICATIONS

被引:109
作者
MONTGOMERY, R
机构
[1] M.S.R.I., Berkeley, 94720, CA
关键词
D O I
10.1007/BF02096874
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the problem of finding the shortest loops with a given holonomy. We show that the solutions are the trajectories of particles in Yang-Mills potentials (Theorem 4), or, equivalently, the projections of Kaluza-Klein geodesics (Theorem 2). Applications to quantum mechanics (Berry's phase, Sect. 3) and the optimal control of deformable bodies (Sect. 6) are touched upon. © 1990 Springer-Verlag.
引用
收藏
页码:565 / 592
页数:28
相关论文
共 43 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]  
Arnol'd VI, 1961, SOV MATH DOKL, V2, P562
[3]  
ARNOLD VI, 1988, ENCY MATH SCI SERIES, V3
[4]   CHERN NUMBERS, QUATERNIONS, AND BERRY PHASES IN FERMI SYSTEMS [J].
AVRON, JE ;
SADUN, L ;
SEGERT, J ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 124 (04) :595-627
[5]  
Baillieuls J., 1975, J OPTIMIZATION TH AP, V25, P519
[6]   LAGRANGIAN AND HAMILTONIAN DESCRIPTIONS OF YANG-MILLS PARTICLES [J].
BALACHANDRAN, AP ;
BORCHARDT, S ;
STERN, A .
PHYSICAL REVIEW D, 1978, 17 (12) :3247-3256
[7]  
BAR C, 1989, GEODESICS CARNOT CAR
[8]  
BAR C, 1988, THESIS BONN
[9]   CLASSICAL ADIABATIC ANGLES AND QUANTAL ADIABATIC PHASE [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (01) :15-27
[10]  
BLISS GA, 1930, AM J MATH, V52, P674