PATTERN-CLASSIFICATION USING PROJECTION PURSUIT

被引:21
作者
FLICK, TE
JONES, LK
PRIEST, RG
HERMAN, C
机构
[1] UNIV LOWELL,DEPT MATH,LOWELL,MA 01854
[2] USN,RES LAB,WASHINGTON,DC 20375
[3] SACHS FREEMAN ASSOCIATES INC,LANDOVER,MD 20785
关键词
Discrimination Neyman; Optimal discriminant function; Pearson criterion; Projection pursuit; Regression; Statistical pattern classification;
D O I
10.1016/0031-3203(90)90083-W
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article discusses the adaptation of recently developed regression techniques to classifier design. Apart from finite sample effects, projection pursuit (PP) regression may be used to model a desired response (class) as a sum of ridge functions according to a minimum expected squared error criterion. This approach can be shown to furnish an optimal discriminant function which can satisfy the Neyman-Pearson criterion over all possible thresholds. Basis function expansions are used instead of smoothed histograms to reduce computation. Since good approximation of a discriminant by a linear combination of moderate number of ridge functions may not be easy, we introduce an improved method utilizing a nonlinear weighting function. © 1990.
引用
收藏
页码:1367 / 1376
页数:10
相关论文
共 19 条
[1]   ASYMPTOTICS OF GRAPHICAL PROJECTION PURSUIT [J].
DIACONIS, P ;
FREEDMAN, D .
ANNALS OF STATISTICS, 1984, 12 (03) :793-815
[2]   ON NONLINEAR FUNCTIONS OF LINEAR-COMBINATIONS [J].
DIACONIS, P ;
SHAHSHAHANI, M .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (01) :175-191
[3]   ON PROJECTION PURSUIT MEASURES OF MULTIVARIATE LOCATION AND DISPERSION [J].
FILL, JA ;
JOHNSTONE, I .
ANNALS OF STATISTICS, 1984, 12 (01) :127-141
[4]   PROJECTION PURSUIT ALGORITHM FOR EXPLORATORY DATA-ANALYSIS [J].
FRIEDMAN, JH ;
TUKEY, JW .
IEEE TRANSACTIONS ON COMPUTERS, 1974, C 23 (09) :881-890
[5]   PROJECTION PURSUIT REGRESSION [J].
FRIEDMAN, JH ;
STUETZLE, W .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (376) :817-823
[6]   PROJECTION PURSUIT DENSITY-ESTIMATION [J].
FRIEDMAN, JH ;
STUETZLE, W ;
SCHROEDER, A .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1984, 79 (387) :599-608
[7]   THE 2-NN RULE FOR MORE ACCURATE NN RISK-ESTIMATION [J].
FUKUNAGA, K ;
FLICK, TE .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1985, 7 (01) :107-112
[8]   OPTIMUM NONLINEAR FEATURES FOR A SCATTER CRITERION IN DISCRIMINANT-ANALYSIS [J].
FUKUNAGA, K ;
ANDO, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1977, 23 (04) :453-459
[9]   BIAS OF NEAREST NEIGHBOR ERROR-ESTIMATES [J].
FUKUNAGA, K ;
HUMMELS, DM .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (01) :103-112
[10]  
Hastie T., 1990, GEN ADDITIVE MODELS