LEARNING-INDUCED AFTERHYPERPOLARIZATION REDUCTIONS IN HIPPOCAMPUS ARE SPECIFIC FOR CELL TYPE AND POTASSIUM CONDUCTANCE

被引:62
作者
DEJONGE, MC [1 ]
BLACK, J [1 ]
DEYO, RA [1 ]
DISTERHOFT, JF [1 ]
机构
[1] NORTHWESTERN UNIV,SCH MED,DEPT CELL BIOL & ANAT,303 E CHICAGO AVE,CHICAGO,IL 60611
关键词
Afterhyperpolarization; CA1 pyramidal cell; Dentate gyrus granule cell; Eye-blink conditioning; I[!sub]AHP[!/sub; Potassium conductances; Rabbit;
D O I
10.1007/BF00227987
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Hippocampal slices were prepared from rabbits trained in a trace eye-blink conditioning task and from naive and pseudoconditioned controls. Measurements of the post-burst afterhyperpolarization (AHP), action potential, and other cellular properties were obtained from intracellular recordings of CA1 pyramidal (N=49) and dentate gyrus granule cells (N=52). A conditioning-specific reduction in the amplitude of the AHP was found in CA1 cells but not in dentate granule cells. This reduction in the AHP was apparent at 50 ms after the end of a depolarizing current pulse, and was maintained for at least 650 ms. Other measured cell characteristics (input resistance, resting membrane potential, action potential shape, inward rectification, spike threshold) were not affected by training, in either CA1 pyramidal or dentate granule cells. Time-course measures indicate that both the medium, Ca2+-independent AHP and the slow, Ca2+-dependent AHP are reduced by conditioning. The slow AHP largely reflects the Ca2+-dependent K+ current, IAHP Rising and falling slopes, peak amplitude, and width of individual action potentials were not changed by learning. This contrasts with observations from invertebrates in which action potential broadening was reported following learning. We conclude that the reduction in AHP that follows hippocampally-dependent associative learning occurs in specific hippocampal cell types and not others, and is mediated by changes in a Ca2-independent AHP and a particular Ca2+-dependent K+ current, IAHP. © 1990 Springer-Verlag.
引用
收藏
页码:456 / 462
页数:7
相关论文
共 39 条
[1]  
AKASE A, 1988, SOC NEUR ABST, V14, P394
[2]   HIPPOCAMPAL-LESIONS IMPAIR MEMORY OF SHORT-DELAY CONDITIONED EYE BLINK IN RABBITS [J].
AKASE, E ;
ALKON, DL ;
DISTERHOFT, JF .
BEHAVIORAL NEUROSCIENCE, 1989, 103 (05) :935-943
[3]   PRIMARY CHANGES OF MEMBRANE CURRENTS DURING RETENTION OF ASSOCIATIVE LEARNING [J].
ALKON, DL ;
LEDERHENDLER, I ;
SHOUKIMAS, JJ .
SCIENCE, 1982, 215 (4533) :693-695
[4]   CALCIUM-MEDIATED REDUCTION OF IONIC CURRENTS - A BIOPHYSICAL MEMORY TRACE [J].
ALKON, DL .
SCIENCE, 1984, 226 (4678) :1037-1045
[5]   SPECIFIC LONG-LASTING POTENTIATION OF SYNAPTIC TRANSMISSION IN HIPPOCAMPAL SLICES [J].
ANDERSEN, P ;
SUNDBERG, SH ;
SVEEN, O ;
WIGSTROM, H .
NATURE, 1977, 266 (5604) :736-737
[6]  
[Anonymous], 1987, MEMORY BRAIN
[7]   HIPPOCAMPECTOMY SELECTIVELY DISRUPTS DISCRIMINATION REVERSAL CONDITIONING OF THE RABBIT NICTITATING-MEMBRANE RESPONSE [J].
BERGER, TW ;
ORR, WB .
BEHAVIOURAL BRAIN RESEARCH, 1983, 8 (01) :49-68
[8]   SINGLE-UNIT ANALYSIS OF DIFFERENT HIPPOCAMPAL CELL-TYPES DURING CLASSICAL-CONDITIONING OF RABBIT NICTITATING-MEMBRANE RESPONSE [J].
BERGER, TW ;
RINALDI, PC ;
WEISZ, DJ ;
THOMPSON, RF .
JOURNAL OF NEUROPHYSIOLOGY, 1983, 50 (05) :1197-1219
[9]  
BERGER TW, 1980, PHYSIOL PSYCHOL, V8, P155
[10]   LONG-LASTING POTENTIATION OF SYNAPTIC TRANSMISSION IN DENTATE AREA OF ANESTHETIZED RABBIT FOLLOWING STIMULATION OF PERFORANT PATH [J].
BLISS, TVP ;
LOMO, T .
JOURNAL OF PHYSIOLOGY-LONDON, 1973, 232 (02) :331-356