HARMONIC-FUNCTIONS FOR A TRANSITION OPERATOR AND APPLICATIONS

被引:50
作者
CONZE, JP [1 ]
RAUGI, A [1 ]
机构
[1] UNIV RENNES 1,PROBABIL LAB,F-35042 RENNES,FRANCE
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 1990年 / 118卷 / 03期
关键词
D O I
10.24033/bsmf.2148
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let u be a continuous non-negative function, defined on [0, 1], such that u(x) + u(x + 1/2) = 1, FOR-ALL x is-a-member-of 0, 1/2] and P(u) be the transition operator defined by P(u)f(x) = u(x/2)f(x/2) + u(x/2 + 1/2)f(x/2 + 1/2), f continuous on [0, 1]. We study the asymptotic behaviour of the iterates (P(u)n, n is-a-member-of N), and give some applications to functional equations, wavelet theory and filtering.
引用
收藏
页码:273 / 310
页数:38
相关论文
共 12 条
[1]  
COHEN A, 1989, ONDELETTES ANAL MULT
[2]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[3]  
Ionescu-Tulcea C., 1950, ANN MATH, V52, P140
[4]  
Jamison B., 1964, J MATH ANAL APPL, V9, P203
[5]   STRONGLY MIXING G-MEASURES [J].
KEANE, M .
INVENTIONES MATHEMATICAE, 1972, 16 (04) :309-&
[7]  
Meyer Y., 1990, ONDELETTES OPERATEUR
[8]  
Neveu J., 1964, BASES MATH CALCUL PR
[9]  
Norman M.F., 1972, MARKOV PROCESSES LEA
[10]  
RAUGI A, 1978, PERIODES FONCTIONS H