PERIODIC ORBIT QUANTIZATION OF BOUND CHAOTIC SYSTEMS

被引:35
作者
DAHLQVIST, P [1 ]
RUSSBERG, G [1 ]
机构
[1] UNIV MARBURG,FACHBEREICH PHYS,W-3550 MARBURG,GERMANY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 20期
关键词
D O I
10.1088/0305-4470/24/20/012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present periodic orbit quantizations of the hyperbola billiard and the x2y2 potential. These two systems may be considered as belonging to the one-parameter family of potentials (x2y2)1/a. The quantum states are determined by means of the zeros of an expanded and truncated Selberg zeta function. The symmetries of the problem are considered and the Selberg zeta function is factorized into the irreducible representations of the symmetry group. The thus calculated eigenenergies are in good agreement with quantum mechanical calculations and converge when the number of terms in the expansion is increased. The results strongly indicate that the trace formula provides individual quantum eigenstates for chaotic systems.
引用
收藏
页码:4763 / 4778
页数:16
相关论文
共 37 条
[1]   RECYCLING OF STRANGE SETS .1. CYCLE EXPANSIONS [J].
ARTUSO, R ;
AURELL, E ;
CVITANOVIC, P .
NONLINEARITY, 1990, 3 (02) :325-359
[2]   RECYCLING OF STRANGE SETS .2. APPLICATIONS [J].
ARTUSO, R ;
AURELL, E ;
CVITANOVIC, P .
NONLINEARITY, 1990, 3 (02) :361-386
[3]   CHAOS ON THE PSEUDOSPHERE [J].
BALAZS, NL ;
VOROS, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 143 (03) :109-240
[4]   A RULE FOR QUANTIZING CHAOS [J].
BERRY, MV ;
KEATING, JP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4839-4849
[5]  
BERRY MV, SPRINGER LECT NOTES, V263, P1
[6]  
BOGOMOLNY EB, 1991, IPNOTH91 PREPR
[7]  
Christiansen F., 1989, THESIS U COPENHAGEN
[8]   GEOMETRICAL PROPERTIES OF MASLOV INDEXES IN THE SEMICLASSICAL TRACE FORMULA FOR THE DENSITY OF STATES [J].
CREAGH, SC ;
ROBBINS, JM ;
LITTLEJOHN, RG .
PHYSICAL REVIEW A, 1990, 42 (04) :1907-1922
[9]   PERIODIC-ORBIT QUANTIZATION OF CHAOTIC SYSTEMS [J].
CVITANOVIC, P ;
ECKHARDT, B .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :823-826
[10]  
CVITANOVIC P, 1991, UNPUB NONLINEARITY