COMPETITION BETWEEN NOISE AND DETERMINISM IN STEP FLOW GROWTH

被引:37
作者
KARMA, A [1 ]
MISBAH, C [1 ]
机构
[1] INST LAUE LANGEVIN,GRENOBLE 9,FRANCE
关键词
D O I
10.1103/PhysRevLett.71.3810
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The continuum equations of Burton, Cabrera, and Frank are extended to include thermal fluctuations and used to derive a nonlinear stochastic equation describing the meandering of an isolated step on a crystal face grown from a vapor. Meandering is found to result from a unique competition between thermal noise, which dominates close to equilibrium, and deterministic noise (spatiotemporal . chaos), which becomes increasingly dominant beyond the morphological instability point. Numerical and analytical results characterizing the step roughness as a function of the supersaturation and the noise strength, k(B)T/gammax(s), are presented.
引用
收藏
页码:3810 / 3813
页数:4
相关论文
共 23 条
[1]   THE MEANDERING OF STEPS AND THE TERRACE WIDTH DISTRIBUTION ON CLEAN SI(111) - AN INSITU EXPERIMENT USING REFLECTION ELECTRON-MICROSCOPY [J].
ALFONSO, C ;
BERMOND, JM ;
HEYRAUD, JC ;
METOIS, JJ .
SURFACE SCIENCE, 1992, 262 (03) :371-381
[2]   MORPHOLOGICAL INSTABILITY OF A TERRACE EDGE DURING STEP-FLOW GROWTH [J].
BALES, GS ;
ZANGWILL, A .
PHYSICAL REVIEW B, 1990, 41 (09) :5500-5508
[3]   THE EQUILIBRATION OF TERRACE WIDTH DISTRIBUTIONS ON STEPPED SURFACES [J].
BARTELT, NC ;
GOLDBERG, JL ;
EINSTEIN, TL ;
WILLIAMS, ED .
SURFACE SCIENCE, 1992, 273 (1-2) :252-260
[4]   NONLINEAR EVOLUTION OF A TERRACE EDGE DURING STEP-FLOW GROWTH [J].
BENA, I ;
MISBAH, CQ ;
VALANCE, A .
PHYSICAL REVIEW B, 1993, 47 (12) :7408-7419
[5]   THE GROWTH OF CRYSTALS AND THE EQUILIBRIUM STRUCTURE OF THEIR SURFACES [J].
BURTON, WK ;
CABRERA, N ;
FRANK, FC .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 243 (866) :299-358
[6]  
Chernov A. A., 1984, MODERN CRYSTALLOGRAP
[7]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[8]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892
[9]   LANGEVIN FORMALISM FOR SOLIDIFICATION [J].
KARMA, A .
PHYSICAL REVIEW LETTERS, 1993, 70 (22) :3439-3442
[10]   FLUCTUATIONS IN SOLIDIFICATION [J].
KARMA, A .
PHYSICAL REVIEW E, 1993, 48 (05) :3441-3458