ENTROPY AND DATA-COMPRESSION SCHEMES

被引:192
作者
ORNSTEIN, DS [1 ]
WEISS, B [1 ]
机构
[1] HEBREW UNIV JERUSALEM,INST MATH,IL-91905 JERUSALEM,ISRAEL
关键词
ENTROPY; SHANNON-MCMILLAN THEOREM; DATA COMPRESSION;
D O I
10.1109/18.179344
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Some new ways of defining the entropy of a process by observing a single typical output sequence as well as a new kind of Shannon-McMillan-Breiman theorem are presented. Here are two sample results: 1) For a stationary ergodic process let R(n)(xi) = inf{k greater-than-or-equal-to n : xi(k+1)xi(k+2)...xi(k+n) = xi1xi2...xi(n), the a.s. lim(n-->infinity) (log R(n)(xi))/n = entropy of the process. 2) In the Lempel-Ziv parsing, a.s. for n sufficiently large most of xi1 ... xi(n) has been parsed into blocks of size roughly, (log n)/h, where h is the entropy of the process.
引用
收藏
页码:78 / 83
页数:6
相关论文
共 7 条
[1]  
Lempel A, 1976, IEEE T INFORM THEORY, V24, P530
[2]  
LEMPEL A, 1977, IEEE T INFORM THEORY, V23, P337
[3]   THE SHANNON-MCMILLAN-BREIMAN THEOREM FOR A CLASS OF AMENABLE-GROUPS [J].
ORNSTEIN, D ;
WEISS, B .
ISRAEL JOURNAL OF MATHEMATICS, 1983, 44 (01) :53-60
[4]   HOW SAMPLING REVEALS A PROCESS [J].
ORNSTEIN, DS ;
WEISS, B .
ANNALS OF PROBABILITY, 1990, 18 (03) :905-930
[5]   ENTROPY AND ISOMORPHISM THEOREMS FOR ACTIONS OF AMENABLE-GROUPS [J].
ORNSTEIN, DS ;
WEISS, B .
JOURNAL D ANALYSE MATHEMATIQUE, 1987, 48 :1-142
[6]   SOME ASYMPTOTIC PROPERTIES OF THE ENTROPY OF A STATIONARY ERGODIC DATA SOURCE WITH APPLICATIONS TO DATA-COMPRESSION [J].
WYNER, AD ;
ZIV, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (06) :1250-1258
[7]   CODING THEOREMS FOR INDIVIDUAL SEQUENCES [J].
ZIV, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (04) :405-412