COMBINATORIAL DESIGNS RELATED TO THE STRONG PERFECT GRAPH CONJECTURE

被引:31
作者
CHVATAL, V
GRAHAM, RL
PEROLD, AF
WHITESIDES, SH
机构
[1] STANFORD UNIV,DEPT OPERAT RES,STANFORD,CA 94305
[2] DARTMOUTH COLL,HANOVER,NH 03755
关键词
D O I
10.1016/0012-365X(79)90114-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
When α, ω are positive integers, we set n = αω + 1 and look for zero-one matrices X, Y of size n × n such that XY= YX = J - I, JX = XJ = αJ, JY = YJ = ωJ. Simple solutions of these matrix equations are easy to find; we describe ways of constructing rather messy ones. Our investigations are motivated by an intimate relationship between the pairs X, Y and minimal imperfect graphs. © 1979.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 13 条
[1]  
BERGE C, 1962, 13IEME COMM ASS GEN
[2]  
Berge C, 1961, WISS ZM LUTHER U HAL, P114
[3]  
BLAND RW, UNPUBLISHED
[4]   COMBINATORIAL DESIGNS AND RELATED SYSTEMS [J].
BRIDGES, WG ;
RYSER, HJ .
JOURNAL OF ALGEBRA, 1969, 13 (03) :432-&
[5]   STRONG PERFECT GRAPH CONJECTURE [J].
CHVATAL, V .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 20 (02) :139-141
[6]   RESOLVABLE BALANCED BIPARTITE DESIGNS [J].
HUANG, C .
DISCRETE MATHEMATICS, 1976, 14 (04) :319-335
[7]  
HUANG C, 1974, DISCRETE MATH, V9, P147
[8]  
Huang C., 1973, UTILITAS MATHEMATICA, V4, P55, DOI DOI 10.1016/0012-365X(74)90145-9
[9]  
HUANG HC, 1976, OR308 CORN U DEP TEC
[10]  
Lovasz L., 1972, DISCRETE MATH, V2, P253, DOI DOI 10.1016/0012-365X(72)90006-4