A CONSISTENT THEORY OF GEOMETRICALLY NONLINEAR SHELLS WITH AN INDEPENDENT ROTATION VECTOR

被引:31
作者
BASAR, Y
机构
[1] Ruhr-Universität Bochum, Institut für Konstruktiven Ingenieurbau, 4630 Bochum, Germany
关键词
MATERIALS - Deformation - MECHANICS - Mathematical Models;
D O I
10.1016/0020-7683(87)90005-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
For shells undergoing finite rotations, a general theory is formulated in terms of consistent displacement and force variables. An independent rotation vector is used for the description of the deformation state. The strain-displacement equations are obtained considering shear deformations. These relations are then transformed by a variational procedure into consistent equilibrium equations and boundary conditions, the validity of which is also confirmed by an independent two-dimensional derivation. The paper closes with the physical interpretation of the force variables and the formulation of the constitutive equations.
引用
收藏
页码:1401 / 1415
页数:15
相关论文
共 14 条
[1]  
[Anonymous], 1968, THEORETICAL ELASTICI
[2]  
BASAR Y, 1986, INGENIEUR ARCH, P56
[3]  
BASAR Y, 1985, MECHANIK FLACHENTRAG
[4]  
HARTE R, 1982, 8210 RUHR U I KONSTR
[5]   OPTIMAL BASIC SHELL EQUATIONS AND THEIR EFFICIENCY [J].
KRATZIG, WB .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1974, 54 (05) :265-276
[6]  
Naghdi P.M., 1973, LINEAR THEORIES ELAS, P425, DOI [10.1007/978-3-662-39776-3_5, DOI 10.1007/978-3-662-39776-3_5]
[7]  
NOLTE LP, 1983, 39 RUHR U I MECH MIT
[9]  
PIETRASZKIEWICZ W, 1979, FINITE ROTATIONS LAG
[10]  
RECKE L, 1986, THESIS RUHR U BOCHUM