ON THE CONVERGENCE OF SPLINE PRODUCT QUADRATURES FOR CAUCHY PRINCIPAL VALUE INTEGRALS

被引:17
作者
DAGNINO, C [1 ]
SANTI, E [1 ]
机构
[1] UNIV LAQUILA,FAC INGN,I-67100 LAQUILA,ITALY
关键词
CAUCHY SINGULAR INTEGRALS; CUBIC B-SPLINES;
D O I
10.1016/0377-0427(91)90025-F
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent paper (this journal (1990)), the authors proposed product integration formulas, for the numerical evaluation of the Cauchy principal value integral f1-1u(x) f(x)/(x - lambda) dx, based on cubic spline interpolation of f, and obtained convergence results for functions f is-an-element-of C(k)[ -, 1], k = 1, 2 or 3. In this report, the same rules are considered and their convergence is investigated for a larger class of function f. An error bound and some uniform convergence results are established, in the case of equally spaced quadrature nodes, for functions f, satisfying a Holder condition of order mu on [ -1,1], 0 < mu less-than-or-equal-to 1.
引用
收藏
页码:181 / 187
页数:7
相关论文
共 23 条
[1]   PRODUCT INTEGRATION OF LOGARITHMIC SINGULAR INTEGRANDS BASED ON CUBIC-SPLINES [J].
ALAYLIOGLU, A ;
LUBINSKY, DS ;
EYRE, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (03) :353-366
[2]  
[Anonymous], [No title captured]
[3]   THE MODULUS OF CONTINUITY OF THE REMAINDER IN THE APPROXIMATION OF LIPSCHITZ FUNCTIONS [J].
BLOOM, WR ;
ELLIOTT, D .
JOURNAL OF APPROXIMATION THEORY, 1981, 31 (01) :59-66
[4]   CONVERGENCE OF QUADRATURES FOR CAUCHY PRINCIPAL VALUE INTEGRALS [J].
CHAWLA, MM ;
KUMAR, S .
COMPUTING, 1979, 23 (01) :67-72
[5]  
CRISCUOLO G, 1987, MATH COMPUT, V48, P725, DOI 10.1090/S0025-5718-1987-0878702-4
[6]   SPLINE PRODUCT QUADRATURE-RULES FOR CAUCHY SINGULAR-INTEGRALS [J].
DAGNINO, C ;
SANTI, E .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 33 (02) :133-140
[7]  
DAVIS PJ, 1984, METHODS NUMERICAL IN
[8]  
DOMSTA J, 1976, STUD MATH, V8, P223
[9]  
ELLIOTT D, 1975, NUMER MATH, V23, P311, DOI 10.1007/BF01438258
[10]  
ELLIOTT D, 1976, NUMER MATH, V25, P287, DOI 10.1007/BF01399417