The physical properties of surfactant-coated and polyelectrolyte-coated surfaces in adhesive contact in air have been studied using the surface forces apparatus technique. Various physisorbed monolayers with different head groups and chains (or polymer segments) were prepared both by adsorption from solution (self-assembly) and by the Langmuir-Blodgett deposition technique. The results show that many monolayer properties depend on the atmospheric conditions such as the relative humidity or presence of organic vapors and that these properties can further change when two monolayer-coated surfaces are brought into contact. These properties include monolayer composition and structure, thickness and compressibility, fluidity and phase state (i.e., whether solid, gel, or liquid), and the adhesion between two monolayer-coated surfaces. In addition, we find that both out-of-plane and in-plane (lateral) phase transitions can be induced in certain adsorbed monolayers when they are subjected to a compressive stress. The results provide new insights into molecular ordering and dynamics in physisorbed monolayers and how monolayers are affected when they are exposed to vapors or when they interact with other surfaces.