APPROXIMATION OF THE INVARIANT MANIFOLD IN THE JOSEPHSON-EQUATION

被引:1
作者
VANVELDHUIZEN, M
机构
来源
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING | 1992年 / 13卷 / 03期
关键词
INVARIANT CURVE; PARALLEL COMPUTATION;
D O I
10.1137/0913038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the application of the algorithm described in [M. van Veldhuizen, Math. Comp., 51 (1988), pp. 677-697] to approximate the average slope of solutions of the Josephson equation. The potential for parallelism of this algorithm has been a motivation for its study. In this work this potential is realized by presenting results obtained on a multiprocessor environment.
引用
收藏
页码:666 / 675
页数:10
相关论文
共 18 条
[1]  
BAL HE, 1988, 1988 P IEEE CS INT C, P82
[2]  
Chan T.N., 1983, THESIS CONCORDIA U M
[3]  
Coddington A., 1955, THEORY ORDINARY DIFF
[4]   NUMERICAL-CALCULATION OF INVARIANT TORI [J].
DIECI, L ;
LORENZ, J ;
RUSSELL, RD .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (03) :607-647
[5]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[6]   COMPUTATION OF QUASI-PERIODIC SOLUTIONS OF FORCED DISSIPATIVE SYSTEMS .2. [J].
KAASPETERSEN, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1986, 64 (02) :433-442
[7]   COMPUTATION OF QUASI-PERIODIC SOLUTIONS OF FORCED DISSIPATIVE SYSTEMS [J].
KAASPETERSEN, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 58 (03) :395-408
[8]   COMPUTATION, CONTINUATION, AND BIFURCATION OF TORUS SOLUTIONS FOR DISSIPATIVE MAPS AND ORDINARY DIFFERENTIAL-EQUATIONS [J].
KAASPETERSEN, C .
PHYSICA D, 1987, 25 (1-3) :288-306
[9]   NUMERICAL COMPUTATION OF INVARIANT CIRCLES OF MAPS [J].
KEVREKIDIS, IG ;
ARIS, R ;
SCHMIDT, LD ;
PELIKAN, S .
PHYSICA D, 1985, 16 (02) :243-251
[10]  
LEVI M, 1988, PHYS REV A, P927