The ontogeny of gonadotropin-releasing hormone (GnRH) systems was investigated in 3 anuran amphibians (genus Rana) by means of immunocytochemical (ICC) techniques and antibodies generated against 3 different forms of GnRH. Antisera that recognize primarily chicken II and mammalian GnRHs revealed two anatomically and developmentally distinct GnRH systems. One system, referred to here as the forebrain-spinal cord system, contained GnRH immunoreactive (ir) fibers extending from the rostral diencephalon through the ventromedial brainstem to the spinal cord. Intensity of labeling was robust in the youngest, premetamorphic tadpoles, but decreased with age. GnRH immunolabeling in the hypothalamic-pituitary tract was not detected until late prometamorphosis and increased with age. Development of GnRHir in the hypothalamic-pituitary tract coincided with first appearance of GnRHir in the terminal nerve in R. catesbeiana, but not in R. cascadae or R. aurora, suggesting species differences. Comparisons of results obtained with antisera to different forms of GnRH support the interpretation that the forebrain-spinal cord system, hitherto undescribed in amphibians, develops first and synthesizes a non-mammalian, chicken II-like GnRH, and that the hypothalamic-pituitary system develops later and synthesizes primarily mammalian GnRH. We speculate that the forebrain-spinal cord system may represent a GnRH innervation of frog sympathetic ganglia, and that the two GnRH systems are chemically and embryonically distinct. © 1990.