SEMICLASSICAL SPECTRA WITHOUT PERIODIC-ORBITS FOR A KICKED TOP

被引:13
作者
GERWINSKI, P
HAAKE, F
WIEDEMANN, H
KUS, M
ZYCZKOWSKI, K
机构
[1] POLISH ACAD SCI,CTR FIZ TEORET,PL-02668 WARSAW,POLAND
[2] JAGIELLONIAN UNIV,INST FIZ,PL-30059 KRAKOW,POLAND
关键词
D O I
10.1103/PhysRevLett.74.1562
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an Latin small letter h with stroke→0 approximation for the quasienergy spectrum of a periodically kicked top, valid under conditions of both regular and chaotic classical motion. In contrast to conventional periodic-orbit theory we implement the semiclassical limit for each matrix element of the Floquet operator rather than for the trace of the propagator. Even though a classical looking action is involved, the approximate matrix elements are specified in terms of complex ghost trajectories instead of real classical orbits. Our mean error for the quasienergies is a surprisingly small 3% of the mean spacing. © 1995 The American Physical Society.
引用
收藏
页码:1562 / 1565
页数:4
相关论文
共 17 条
  • [1] ATOMIC COHERENT STATES IN QUANTUM OPTICS
    ARECCHI, FT
    THOMAS, H
    GILMORE, R
    COURTENS, E
    [J]. PHYSICAL REVIEW A, 1972, 6 (06): : 2211 - &
  • [2] NOVEL RULE FOR QUANTIZING CHAOS
    AURICH, R
    MATTHIES, C
    SIEBER, M
    STEINER, F
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (11) : 1629 - 1632
  • [3] BALIAN R, 1991, DISCOURSES MATH ITS, V1
  • [4] SEMICLASSICAL ACCURACY FOR BILLIARDS
    BOASMAN, PA
    [J]. NONLINEARITY, 1994, 7 (02) : 485 - 537
  • [5] CREAGH S, COMMUNICATION
  • [6] LONG-TIME BEHAVIOR OF THE SEMICLASSICAL BAKERS MAP
    DITTES, FM
    DORON, E
    SMILANSKY, U
    [J]. PHYSICAL REVIEW E, 1994, 49 (02): : R963 - R966
  • [7] SUPERRADIANT PULSES AND DIRECTED ANGULAR-MOMENTUM STATES
    GLAUBER, RJ
    HAAKE, F
    [J]. PHYSICAL REVIEW A, 1976, 13 (01) : 357 - 366
  • [8] GUTZWILLER M., 1990, CHAOS CLASSICAL QUAN
  • [9] Haake F., 2018, QUANTUM SIGNATURES C, V54, DOI DOI 10.1007/978-3-642-05428-0
  • [10] THE CAT MAPS - QUANTUM-MECHANICS AND CLASSICAL MOTION
    KEATING, JP
    [J]. NONLINEARITY, 1991, 4 (02) : 309 - 341