A DETERMINISTIC ANNEALING APPROACH TO CLUSTERING

被引:244
作者
ROSE, K
GUREWITZ, E
FOX, G
机构
[1] Caltech Concurrent Computation Program, California Institute of Technology, Pasadena, CA 91125
关键词
clustering; fuzzy clustering; Pattern classification; statistical mechanics;
D O I
10.1016/0167-8655(90)90010-Y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A deterministic annealing technique is proposed for the nonconvex optimization problem of clustering. Deterministic annealing is used in order to avoid local minima of the given cost function which trap traditional techniques. A set of temperature parametrized Gibbs probability density functions relate each data point to each cluster. An effective cost function is defined and minimized at each temperature. It is shown that as the temperature approaches zero, the algorithm becomes the basic ISODATA algorithm. The method is independent of the initial choice of cluster means. Simulation results are given and show how the method succeeds in avoiding local minima. © 1990.
引用
收藏
页码:589 / 594
页数:6
相关论文
共 8 条
[1]   A CLUSTERING TECHNIQUE FOR SUMMARIZING MULTIVARIATE DATA [J].
BALL, GH ;
HALL, DJ .
BEHAVIORAL SCIENCE, 1967, 12 (02) :153-&
[3]  
DUDA RO, 1974, PATTERN CLASSIFICATI
[4]  
Dunn J. C., 1973, Journal of Cybernetics, V3, P32, DOI 10.1080/01969727308546046
[5]   UNSUPERVISED OPTIMAL FUZZY CLUSTERING [J].
GATH, I ;
GEVA, AB .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) :773-781
[6]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[7]   OPTIMIZATION BY SIMULATED ANNEALING [J].
KIRKPATRICK, S ;
GELATT, CD ;
VECCHI, MP .
SCIENCE, 1983, 220 (4598) :671-680
[8]   Statistical mechanics as the underlying theory of 'elastic' and 'neural' optimisations [J].
Simic, Petar D. .
NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1990, 1 (01) :89-103