NEW TREATMENT ON BIFURCATIONS OF PERIODIC-SOLUTIONS AND HOMOCLINIC ORBITS AT HIGH-R IN THE LORENZ EQUATIONS

被引:18
作者
LI, JB [1 ]
ZHANG, JM [1 ]
机构
[1] GEORGIA INST TECHNOL,CTR DYNAM SYST & NONLINEAR STUDIES,ATLANTA,GA 30332
关键词
LORENZ EQUATIONS; SLOWLY VARYING PENDULUM EQUATIONS; MELNIKOV VECTOR; BIFURCATION OF PERIODIC SOLUTIONS; HOMOCLINIC ORBITS;
D O I
10.1137/0153053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the existence of periodic solutions and homoclinic orbits in the Lorenz equations with high r is rigorously proved. The paper deals with the Lorenz model as a three-dimensional perturbed Hamiltonian system generated by the three-dimensional Lie algebra. By using the method of Melnikov vector, the explicit parametric conditions can be determined.
引用
收藏
页码:1059 / 1071
页数:13
相关论文
共 11 条
[1]  
ARNOLD V, 1983, GEOMETRICAL METHODS
[2]  
OLVER PJ, 1986, APPLICATIONS LIE GRO
[3]   INVARIANTS OF REAL LOW DIMENSION LIE-ALGEBRAS [J].
PATERA, J ;
SHARP, RT ;
WINTERNITZ, P ;
ZASSENHAUS, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :986-994
[4]   MOMENT EQUATION DESCRIPTION OF MAGNETIC REVERSALS IN EARTH [J].
ROBBINS, KA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1976, 73 (12) :4297-4301
[6]  
SACHDEV PL, 1991, PURE APPL MATH, V142
[7]   DYNAMICS RETROSPECTIVE - GREAT PROBLEMS, ATTEMPTS THAT FAILED [J].
SMALE, S .
PHYSICA D-NONLINEAR PHENOMENA, 1991, 51 (1-3) :267-273
[8]  
Sparrow C, 1982, LORENZ EQUATIONS BIF
[9]   PERIODIC-ORBITS IN SLOWLY VARYING OSCILLATORS [J].
WIGGINS, S ;
HOLMES, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (03) :592-611
[10]   HOMOCLINIC ORBITS IN SLOWLY VARYING OSCILLATORS [J].
WIGGINS, S ;
HOLMES, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (03) :612-629