ON THE QUANTIZATION OF ARNOLD CAT

被引:22
作者
KNABE, S
机构
[1] Fachbereich Math., Tech. Univ. Berlin
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 11期
关键词
D O I
10.1088/0305-4470/23/11/025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Characterises the quantisation UA of the classical map A in SL(2, Z) using the Heisenberg group, constructs the eigenstates for N=perfect square (where =2 pi /N) and shows that the Fourier components of the Wigner functions of a complete set of eigenstates go to zero for N=p2, p ′, p to infinity , A hyperbolic.
引用
收藏
页码:2013 / 2025
页数:13
相关论文
共 21 条
[1]  
Arnold V.I., 1968, ERGODIC PROBLEMS CLA
[2]   BORN-OPPENHEIMER ADIABATIC MECHANISM FOR REGULARITY OF STATES IN THE QUANTUM STADIUM BILLIARD [J].
BAI, YY ;
HOSE, G ;
STEFANSKI, K ;
TAYLOR, HS .
PHYSICAL REVIEW A, 1985, 31 (05) :2821-2826
[3]   THE QUANTIZED BAKERS TRANSFORMATION [J].
BALAZS, NL ;
VOROS, A .
EUROPHYSICS LETTERS, 1987, 4 (10) :1089-1094
[4]   THE QUANTIZED BAKERS TRANSFORMATION [J].
BALAZS, NL ;
VOROS, A .
ANNALS OF PHYSICS, 1989, 190 (01) :1-31
[5]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091
[6]   QUANTUM SCARS OF CLASSICAL CLOSED ORBITS IN PHASE-SPACE [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1989, 423 (1864) :219-231
[7]  
BOGUMOLNY EB, 1988, PHYSICA D, V31, P169
[8]   EXACT EIGENFUNCTIONS FOR A QUANTIZED MAP [J].
ECKHARDT, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (10) :1823-1831
[9]   QUANTUM-MECHANICS OF A CLASSICALLY CHAOTIC SYSTEM - OBSERVATIONS ON SCARS, PERIODIC-ORBITS, AND VIBRATIONAL ADIABATICITY [J].
ECKHARDT, B ;
HOSE, G ;
POLLAK, E .
PHYSICAL REVIEW A, 1989, 39 (08) :3776-3793
[10]  
ESPOSTI MD, 1989, UNPUB