ON THE QUANTIZATION OF THE 3-PARTICLE TODA LATTICE

被引:12
作者
ISOLA, S
KANTZ, H
LIVI, R
机构
[1] UNIV FLORENCE,DIPARTMENTO FIS,I-50125 FLORENCE,ITALY
[2] IST NAZL FIS NUCL,FLORENCE,ITALY
[3] UNIV FLORENCE,CONSORZIO INTERUNIV FIS MAT,I-50121 FLORENCE,ITALY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 13期
关键词
QUANTAL SPECTRA; SYSTEM;
D O I
10.1088/0305-4470/24/13/021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compare the Einstein-Brillouin-Keller quantization procedure and the canonical quantization of a three-particle Toda chain with periodic boundary conditions. In particular, the transition from very low energies, at which the system may be approximated by harmonic oscillators, to intermediate energies is investigated. This is the regime of a general integrable nonlinear system, for which we find a Poissonian statistics for the energy levels. In the limit of very high energies we exploit the fact that the system may be described essentially by a triangular billiard and thus can derive some exact results.
引用
收藏
页码:3061 / 3076
页数:16
相关论文
共 30 条
[1]  
[Anonymous], 1852, LECONS THEORIE MATH
[2]  
ARNOLD VI, 1978, GRADUATE TEXTS MATH, V60
[3]  
BELLISSARD J, 1985, LECT NOTES MATH, V1159, P204
[4]   LEVEL CLUSTERING IN REGULAR SPECTRUM [J].
BERRY, MV ;
TABOR, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 356 (1686) :375-394
[6]   QUANTIZING A CLASSICALLY ERGODIC SYSTEM - SINAI BILLIARD AND THE KKR METHOD [J].
BERRY, MV .
ANNALS OF PHYSICS, 1981, 131 (01) :163-216
[7]  
BERRY MV, DYNAMICAL CHAOS
[8]  
BLEHER PM, 1990, PREPRINT CTR PHYSIQU
[9]   SPECTRAL PROPERTIES OF THE LAPLACIAN AND RANDOM MATRIX THEORIES [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
JOURNAL DE PHYSIQUE LETTRES, 1984, 45 (21) :1015-1022
[10]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4