COUPLED NLS EQUATIONS FOR COUNTER PROPAGATING WAVES IN SYSTEMS WITH REFLECTION SYMMETRY

被引:18
作者
KNOBLOCH, E [1 ]
GIBBON, JD [1 ]
机构
[1] UNIV LONDON IMPERIAL COLL SCI & TECHNOL,DEPT MATH,LONDON SW7 2BZ,ENGLAND
关键词
D O I
10.1016/0375-9601(91)90031-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The amplitude of a wavetrain in a dispersive system generally evolves according to the cubic nonlinear Schrodinger (NLS) equation. In a reflection-symmetric system, the interaction of right and left travelling wavetrains with amplitudes epsilon-A + (zeta +, T2) and epsilon-A - (zeta-, T2) is described by two nonlinear Schrodinger equations with mean field coupling: +/- 2i-partial-A +/- /partial-T2 + (d2-omega/dk2) x partial-2 A +/- /partial-zeta +/- 2 = mu +/- A +/- + alpha-A +/- \A +/- \2. The independent variables are defined by zeta +/- = epsilon (c(g)t +/- chi), T2 = epsilon-2-t and the coupling arises through mu +/- = beta[ (1/P -/+) integral-o/p -/+ \A -/+ \2 d-zeta -/+]. The analysis is applied to electromagnetic wave propagation in an optical fibre.
引用
收藏
页码:353 / 356
页数:4
相关论文
共 7 条
[1]   SEQUENTIAL TIME CLOSURES FOR INTERACTING RANDOM WAVES [J].
BENNEY, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICS AND PHYSICS, 1967, 46 (04) :363-&
[2]   AMPLITUDE EQUATIONS AT THE CRITICAL-POINTS OF UNSTABLE DISPERSIVE PHYSICAL SYSTEMS [J].
GIBBON, JD ;
MCGUINNESS, MJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1981, 377 (1769) :185-219
[3]   AMPLITUDE EQUATIONS FOR TRAVELING-WAVE CONVECTION [J].
KNOBLOCH, E ;
DELUCA, J .
NONLINEARITY, 1990, 3 (04) :975-980
[4]   SOLITONS IN OPTICAL FIBERS AND THE SOLITON LASER [J].
MOLLENAUER, LF .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 315 (1533) :437-450
[5]  
NEWELL AC, 1974, NONLINEAR WAVE MOTIO
[6]   PERTURBATION METHOD FOR A NONLINEAR WAVE MODULATION .I. [J].
TANIUTI, T ;
YAJIMA, N .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (08) :1369-&
[7]   NON-LINEAR WAVE PACKETS IN THE KELVIN-HELMHOLTZ INSTABILITY [J].
WEISSMAN, MA .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1979, 290 (1377) :639-681