APPROXIMATION CLOSE TO BLOW-UP TIME OF SOLUTIONS OF 2-DIMENSIONAL QUASI-LINEAR WAVE-EQUATIONS

被引:9
作者
ALINHAC, S
机构
关键词
D O I
10.1137/S0036141093244544
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a general quasi-linear wave equation in two space dimensions and Cauchy data of size epsilon, we construct an approximate solution using the method of nonlinear geometric optics. Away from the blow up time, we obtain arbitrary accuracy near the light cone. Near the blow up time, we make explicit the behavior of the solution and of the error terms.
引用
收藏
页码:529 / 565
页数:37
相关论文
共 11 条
[1]  
ALINHAC S, 1992, COMMUN PART DIFF EQ, V17, P447
[2]  
ALINHAC S, 1992, IN PRESS TEMPS COMPO
[3]   THE VALIDITY OF NONLINEAR GEOMETRIC OPTICS FOR WEAK SOLUTIONS OF CONSERVATION-LAWS [J].
DIPERNA, RJ ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 98 (03) :313-347
[4]   RADIATION FIELD OF PULSE SOLUTIONS OF WAVE EQUATION [J].
FRIEDLANDER, FG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 269 (1336) :53-&
[5]  
FRIEDLANDER G, 1964, P ROY SOC LOND A MAT, V279, P386
[6]  
HORMANDER L, 1986, LECT NOTES MATH, V1256, P214
[7]  
HORMANDER L, 1985, 5 MITT LEFFL REP
[9]  
MAJDA A, 1984, STUD APPL MATH, V71, P149
[10]  
MAJDA A, 1984, SPRINGER APPL MATH S, V53