ON THE SUPERCONVERGENCE OF THE SATISFYING-BABUSKA-BREZZI METHOD

被引:4
作者
FRANCA, LP
机构
[1] Laboratório Nacional de Coputação Científica, LNCC, Rio de Janeiro, 22290, Rua Lauro Müller
关键词
D O I
10.1002/nme.1620290807
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A simple two‐point boundary value problem, written in a mixed form, is shown to have superconvergence characteristics using the Satisfying‐Babuska–Brezzi (SBB) method. Convergence and accuracy analyses reveal superior performance of the method compared to the usual Galerkin method. Copyright © 1990 John Wiley & Sons, Ltd
引用
收藏
页码:1715 / 1726
页数:12
相关论文
共 14 条
[1]   OPTIMAL STRESS LOCATIONS IN FINITE-ELEMENT MODELS [J].
BARLOW, J .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1976, 10 (02) :243-251
[2]  
Becker E.B., 1981, FINITE ELEMENTS INTR, V1
[3]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[4]  
CAREY GF, 1983, FINITE ELEMENTS 2ND, V11
[5]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[6]   2 CLASSES OF MIXED FINITE-ELEMENT METHODS [J].
FRANCA, LP ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 69 (01) :89-129
[7]  
FRANCA LP, 1987, THESIS STANFORD U US
[8]  
Hughes T. J. R., 1987, FINITE ELEMENT METHO
[9]   SUPERCONVERGENCE PHENOMENON IN THE FINITE-ELEMENT METHOD ARISING FROM AVERAGING GRADIENTS [J].
KRIZEK, M ;
NEITTAANMAKI, P .
NUMERISCHE MATHEMATIK, 1984, 45 (01) :105-116
[10]   ON SUPERCONVERGENCE TECHNIQUES [J].
KRIZEK, M ;
NEITTAANMAKI, P .
ACTA APPLICANDAE MATHEMATICAE, 1987, 9 (03) :175-198