Minimal Polynomial Realizations

被引:23
作者
Bartosiewicz, Z. [1 ]
机构
[1] Bialystok Tech Univ, Bialystok, Poland
关键词
Polynomial systems; Realization theory; Algebraic observability; Minimal systems;
D O I
10.1007/BF02551285
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the problem of realizing input-output maps by polynomial continuous-time systems. This study requires a careful definition of the notions of systems and differential equations on an algebraic variety. A concept of minimality is also introduced, and a uniqueness result is proved.
引用
收藏
页码:227 / 237
页数:11
相关论文
共 13 条
[1]  
Baillieul J., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P879, DOI 10.1016/0362-546X(80)90002-4
[2]   CONTROLLABILITY AND OBSERVABILITY OF POLYNOMIAL DYNAMICAL-SYSTEMS [J].
BAILLIEUL, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1981, 5 (05) :543-552
[3]  
Bartosiewicz Z., 1986, Theory and Applications of Nonlinear Control Systems, P293
[4]  
Bartosiewicz Z., 1986, ALGEBR GEOM TOPOL, P45
[5]  
Bartosiewicz Z., 1985, IMA J MATH CONTROL I, V2, P71
[6]   A FINITENESS CRITERION FOR NON-LINEAR INPUT-OUTPUT DIFFERENTIAL-SYSTEMS [J].
FLIESS, M ;
KUPKA, I .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1983, 21 (05) :721-728
[7]   GLOBAL REALIZATIONS OF ANALYTIC INPUT-OUTPUT MAPPINGS [J].
GAUTHIER, JP ;
BORNARD, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (03) :509-521
[8]  
Hirsch K.A., 1977, BASIC ALGEBRAIC GEOM
[9]   EXISTENCE AND UNIQUENESS OF REALIZATIONS OF NON-LINEAR SYSTEMS [J].
JAKUBCZYK, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1980, 18 (04) :455-471
[10]  
Sontag ED, 1976, NONLINEAR ANAL-THEOR, V1, P55