RECONSTRUCTION OF CHAOTIC SIGNALS USING SYMBOLIC DATA

被引:17
作者
TANG, XZ
TRACY, ER
BOOZER, AD
DEBRAUW, A
BROWN, R
机构
[1] Physics Department, College of William and Mary, Williamsburg
关键词
D O I
10.1016/0375-9601(94)90721-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the reconstruction of dynamical systems from noisy time-series. In particular, we consider the use of the symbol statistics (coarse-grained signal data) as the target for reconstruction. The statistics of symbol sequences is relatively insensitive to moderate amounts of measurement noise (sigma(noise)/sigma(signal) almost-equal-to 10-20%), while larger amounts produce a substantial bias. We show that it is possible to produce robust reconstructions even when sigma(noise)/sigma(signal) almost-equal-to O(1). Our study shows that even at such high noise levels the procedure is convergent. i.e. the accuracy of parameter estimates is limited only by the amount of data and computer time available.
引用
收藏
页码:393 / 398
页数:6
相关论文
共 17 条
[1]  
ARBARBANEL HDI, 1993, REV MOD PHYS, V65
[2]   ERGODIC THEORY OF AXIOM A FLOWS [J].
BOWEN, R ;
RUELLE, D .
INVENTIONES MATHEMATICAE, 1975, 29 (03) :181-202
[3]  
BOX GEP, 1970, TIME SERIES ANAL FOR
[4]  
BROWN R, 1992, UCSD PREPRINT
[5]  
BROWN R, IN PRESS PHYS REV E
[6]   SYMBOLIC DYNAMICS OF NOISY CHAOS [J].
CRUTCHFIELD, JP ;
PACKARD, NH .
PHYSICA D, 1983, 7 (1-3) :201-223
[7]   INFERRING STATISTICAL COMPLEXITY [J].
CRUTCHFIELD, JP ;
YOUNG, K .
PHYSICAL REVIEW LETTERS, 1989, 63 (02) :105-108
[8]  
Devaney R., 1989, INTRO CHAOTIC DYNAMI
[9]   IS A PERTURBATION-THEORY FOR DYNAMICAL CHAOS POSSIBLE [J].
ERSHOV, SV .
PHYSICS LETTERS A, 1993, 177 (03) :180-185
[10]   STRUCTURE OF THE PARAMETER SPACE OF THE HENON MAP [J].
GALLAS, JAC .
PHYSICAL REVIEW LETTERS, 1993, 70 (18) :2714-2717