AN INTEGRAL TRANSFORM RELATED TO QUANTIZATION

被引:35
作者
DAUBECHIES, I [1 ]
GROSSMANN, A [1 ]
机构
[1] CTR LUMINY,CTR PHYS THEOR,F-13288 MARSEILLE 2,FRANCE
关键词
D O I
10.1063/1.524702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study in some detail the correspondence between a function f on phase space and the matrix elements (Qf)(a, b) of its quantized Q f between the coherent states |a< and |b<. It is an integral transform: Qf(a, b) = ∫{a, b |v} f(v) dv which resembles in many ways the integral transform of Bargmann. We obtain the matrix elements of Q f between harmonic oscillator states as the Fourier coefficients of f with respect to an explicit orthonormal system. © 1980 American Institute of Physics.
引用
收藏
页码:2080 / 2090
页数:11
相关论文
共 31 条
[2]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[3]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[4]   ORDERED EXPANSIONS IN BOSON AMPLITUDE OPERATORS [J].
CAHILL, KE ;
GLAUBER, RJ .
PHYSICAL REVIEW, 1969, 177 (5P1) :1857-+
[5]  
DAUBECHIES I, PROJECTIVE RESPRESEN
[6]  
de Groot S., 1974, TRANSFORMATION WEYL
[7]  
DEGROOT SR, 1972, F ELECTRODYNAMICS, pCH6
[8]  
GAUTRIN R, 1974, J MATH PHYS, V15, P1686
[9]  
GELFAND IM, 1967, GENERALIZED FUNCTION, V2
[10]  
GROSSMANN A, 1978, HELV PHYS ACTA, V51, P252