INVARIANT-MANIFOLDS FOR METASTABLE PATTERNS IN UT=EPSILON-2UXX-F(U)

被引:69
作者
CARR, J [1 ]
PEGO, R [1 ]
机构
[1] UNIV MICHIGAN,DEPT MATH,ANN ARBOR,MI 48109
基金
美国国家科学基金会;
关键词
D O I
10.1017/S0308210500031425
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the above equation on the interval 0≦x≦1 subject to Neumann boundary conditions with f(u) = F′(u) where F is a double well energy density function with equal minima. Our previous work [3] proved the existence and persistence of very slowly evolving patterns (metastable states) in solutions with two-phase initial data. Here we characterise these metastable states in terms of the global unstable manifolds of equilibria, as conjectured by Fusco and Hale [6]. © 1990, Royal Society of Edinburgh. All rights reserved.
引用
收藏
页码:133 / 160
页数:28
相关论文
共 13 条
[1]  
Bates P, 1989, DYNAMICS REPORTED, V2, P1
[2]  
BRUNOVSKY P, 1988, DYN REP, V1, P57
[3]   METASTABLE PATTERNS IN SOLUTIONS OF UT=E2UXX-F(U) [J].
CARR, J ;
PEGO, RL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (05) :523-576
[4]   INSTABILITY RESULTS FOR REACTION DIFFUSION EQUATIONS WITH NEUMANN BOUNDARY-CONDITIONS [J].
CASTEN, RG ;
HOLLAND, CJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 27 (02) :266-273
[5]   ASYMPTOTIC-BEHAVIOR FOR SOLUTIONS OF A ONE-DIMENSIONAL PARABOLIC EQUATION WITH HOMOGENEOUS NEUMANN BOUNDARY-CONDITIONS [J].
CHAFEE, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1975, 18 (01) :111-134
[6]  
FUSCO G., 1989, J DYN DIFFER EQU, V1, P75, DOI DOI 10.1007/BF01048791
[7]  
Hale J. K., 1988, ASYMPTOTIC BEHAV DIS
[8]  
Hartman P., 2002, ORDINARY DIFFERENTIA, V2
[9]  
HENRY D, 1982, LECTURE NOTES MATH, V840