A PARALLEL TIME HARDWARE TRADEOFF T.H=O(2N/2) FOR THE KNAPSACK-PROBLEM

被引:20
作者
FERREIRA, AG
机构
[1] Laboratoire de l’lnformatique du Parallélisme—IMAG, Ecole Normale Supérieure de Lyon, 69364
关键词
KNAPSACK PROBLEM; NP-COMPLETE; PARALLEL ALGORITHMS; TIME PROCESSOR MEMORY TRADEOFF;
D O I
10.1109/12.73593
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a parallel algorithm that solves a knapsack problem of size n in time T = O(n * (2n/2)epsilon) when P = O((2n/2)(1-epsilon)), 0 less-than-or-equal-to epsilon less-than-or-equal-to 1, processors are available. The algorithm needs S = O(2n/2) memory space in a shared memory. Let H (for hardware) be the number of processors plus the number of memory cells used by a parallel algorithm. The parallel algorithm that we describe here takes a linear time proportional to (n/2) to find a solution when P = O(2n/2), leading to a tradeoff T . H = O(2n/2).
引用
收藏
页码:221 / 225
页数:5
相关论文
共 17 条