Autoimmunity to a 28-29-kDa cell-surface DNA-binding molecule has previously been described in patients with systemic lupus erythematosus and related autoimmune diseases. This report describes experiments that implicate a similar antigen-antibody system in the evolution of autoimmunity in lupus-prone mice. DNA binding to murine spleen cells was found to be a saturable phenomenon that was inhibited by excess cold DNA and trypsinization. The role of autoimmunity to murine cell-surface DNA-binding molecules in lupus-prone mice (MRL lpr/lpr, MRL +/+, BXSB) was compared to normal mice (BALB/c, C3H.SW) by means of an assay that measured the inhibition of cell-surface DNA binding. Only sera from lupus strains had inhibitory activity and this component was shown to be an IgM autoantibody. Furthermore, we isolated a spontaneously occurring IgM monoclonal antibody from the spleen of an MRL/lpr mouse, which inhibited DNA binding to mouse cells. Time-course studies indicated that young female MRL/lpr mice lacked detectable activity against cell-surface DNA-binding molecules; however, by 8-10 weeks maximal inhibitory activity was observed. This response occurred prior to the development of significant antinuclear antibody activity. With the appearance of overt disease and anti-DNA antibodies, inhibition of DNA-binding activity became undetectable. These findings mirror previous studies on autoimmunity to a cell-surface DNA-binding molecule on human leucocytes, but have the added advantage of permitting the study of the temporal evolution of this inhibitory activity.in relation to disease expression.