INTERACTION OF TURING AND FLOW-INDUCED CHEMICAL INSTABILITIES

被引:32
作者
DAWSON, SP
LAWNICZAK, A
KAPRAL, R
机构
[1] UNIV GUELPH,DEPT MATH & STAT,GUELPH N1G 2W1,ONTARIO,CANADA
[2] LOS ALAMOS NATL LAB,CTR NONLINEAR STUDIES,LOS ALAMOS,NM 87545
[3] UNIV TORONTO,DEPT CHEM,CHEM PHYS THEORY GRP,TORONTO M5S 1A1,ONTARIO,CANADA
关键词
D O I
10.1063/1.467185
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interaction between the Turing instability and the instability induced by a differential flow is studied in the Selkov model. Both instabilities give rise to the formation of spatial patterns, and for a range of parameter values, these patterns can compete. The effect of anisotropic diffusion on the pattern formation process is investigated. Stripes with different orientations that travel with time and the suppression of patterns due to a competition of both instabilities are observed.
引用
收藏
页码:5211 / 5218
页数:8
相关论文
共 25 条
[1]  
[Anonymous], 1991, MATH BIOL
[2]   INSTABILITIES OF FRONT PATTERNS IN REACTION DIFFUSION-SYSTEMS [J].
ARNEODO, A ;
ELEZGARAY, J ;
PEARSON, J ;
RUSSO, T .
PHYSICA D, 1991, 49 (1-2) :141-160
[3]   MICROSCOPIC SIMULATION OF CHEMICAL OSCILLATIONS IN HOMOGENEOUS SYSTEMS [J].
BARAS, F ;
PEARSON, JE ;
MANSOUR, MM .
JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (08) :5747-5750
[4]   EXPERIMENTAL-EVIDENCE OF A SUSTAINED STANDING TURING-TYPE NONEQUILIBRIUM CHEMICAL-PATTERN [J].
CASTETS, V ;
DULOS, E ;
BOISSONADE, J ;
DEKEPPER, P .
PHYSICAL REVIEW LETTERS, 1990, 64 (24) :2953-2956
[5]   LATTICE BOLTZMANN COMPUTATIONS FOR REACTION-DIFFUSION EQUATIONS [J].
DAWSON, SP ;
CHEN, S ;
DOOLEN, GD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (02) :1514-1523
[6]  
De Groot S R., 1984, NONEQUILIBRIUM THERM
[7]   NOISE-SUSTAINED STRUCTURE, INTERMITTENCY, AND THE GINZBURG-LANDAU EQUATION [J].
DEISSLER, RJ .
JOURNAL OF STATISTICAL PHYSICS, 1985, 40 (3-4) :371-395
[8]   GENERATION OF COUNTERPROPAGATING NONLINEAR INTERACTING TRAVELING WAVES BY LOCALIZED NOISE [J].
DEISSLER, RJ ;
BRAND, HR .
PHYSICS LETTERS A, 1988, 130 (4-5) :293-298
[9]   VELOCITY-DEPENDENT LYAPUNOV EXPONENTS AS A MEASURE OF CHAOS FOR OPEN-FLOW SYSTEMS [J].
DEISSLER, RJ ;
KANEKO, K .
PHYSICS LETTERS A, 1987, 119 (08) :397-402