CHARACTERIZATION OF ESCHERICHIA-COLI THIOREDOXINS WITH ALTERED ACTIVE-SITE RESIDUES

被引:56
作者
GLEASON, FK [1 ]
LIM, CJ [1 ]
GERAMINEJAD, M [1 ]
FUCHS, JA [1 ]
机构
[1] UNIV MINNESOTA,DEPT BIOCHEM,ST PAUL,MN 55108
关键词
D O I
10.1021/bi00467a016
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Escherichia coli thioredoxin is a small disulfide-containing redox protein with the active site sequence Cys-Gly-Pro-Cys-Lys. Mutations were made in this region of the thioredoxin gene and the mutant proteins expressed in E. coli strains lacking thioredoxin. Mutant proteins with a 17-membered or 11-membered disulfide ring were inactive in vivo. However, purified thioredoxin with the active site sequence Cys-Gly-Arg-Pro-Cys-Lys is still able to serve as a substrate for thioredoxin reductase and a reducing agent in the ribonucleotide reductase reaction, although with greatly reduced catalytic efficiency. A smaller disulfide ring, with the active site sequence Cys-Ala-Cys, does not turn over at a sufficient rate to be an effective reducing agent. Strain in the small ring favors the formation of intermolecular disulfide bonds. Alteration of the invariant proline to a serine has little effect on redox activity. The function of this residue may be in maintaining the stability of the active site region rather than participation in redox activity or protein-protein interactions. Mutation of the positively charged lysine in the active site to a glutamate residue raises the Km values with interacting enzymes. Although it has been proposed that the positive residue at position 36 is conserved to maintain the thiolate anion on Cys-32 (Kallis & Holmgren, 1985), the presence of the negative charge at this position does not alter the pH dependence of activity or fluorescence behavior. The lysine is most likely conserved to facilitate thioredoxin-protein interactions. © 1990, American Chemical Society. All rights reserved.
引用
收藏
页码:3701 / 3709
页数:9
相关论文
共 48 条
[1]   THE ANTIGENIC STRUCTURE OF PROTEINS - A REAPPRAISAL [J].
BENJAMIN, DC ;
BERZOFSKY, JA ;
EAST, IJ ;
GURD, FRN ;
HANNUM, C ;
LEACH, SJ ;
MARGOLIASH, E ;
MICHAEL, JG ;
MILLER, A ;
PRAGER, EM ;
REICHLIN, M ;
SERCARZ, EE ;
SMITHGILL, SJ ;
TODD, PE ;
WILSON, AC .
ANNUAL REVIEW OF IMMUNOLOGY, 1984, 2 :67-101
[2]   A RAPID, SENSITIVE METHOD FOR DETECTION OF ALKALINE-PHOSPHATASE CONJUGATED ANTI-ANTIBODY ON WESTERN BLOTS [J].
BLAKE, MS ;
JOHNSTON, KH ;
RUSSELLJONES, GJ ;
GOTSCHLICH, EC .
ANALYTICAL BIOCHEMISTRY, 1984, 136 (01) :175-179
[3]  
CLANCEY CJ, 1987, J BIOL CHEM, V262, P13545
[4]  
CLELAND WW, 1977, ADV ENZYMOL RELAT AR, V45, P274
[5]   MUTANTS OF ESCHERICHIA-COLI REQUIRING METHIONINE OR VITAMIN-B12 [J].
DAVIS, BD ;
MINGIOLI, ES .
JOURNAL OF BACTERIOLOGY, 1950, 60 (01) :17-28
[7]   ASSIGNMENT OF THE PROTON NMR-SPECTRUM OF REDUCED AND OXIDIZED THIOREDOXIN - SEQUENCE-SPECIFIC ASSIGNMENTS, SECONDARY STRUCTURE, AND GLOBAL FOLD [J].
DYSON, HJ ;
HOLMGREN, A ;
WRIGHT, PE .
BIOCHEMISTRY, 1989, 28 (17) :7074-7087
[8]   SEQUENCE OF PROTEIN DISULFIDE ISOMERASE AND IMPLICATIONS OF ITS RELATIONSHIP TO THIOREDOXIN [J].
EDMAN, JC ;
ELLIS, L ;
BLACHER, RW ;
ROTH, RA ;
RUTTER, WJ .
NATURE, 1985, 317 (6034) :267-270
[9]   PURIFICATION OF METHIONINE SULFOXIDE REDUCTASE FROM ESCHERICHIA-COLI [J].
EJIRI, SI ;
WEISSBACH, H ;
BROT, N .
ANALYTICAL BIOCHEMISTRY, 1980, 102 (02) :393-398
[10]   CONFORMATIONAL AND FUNCTIONAL SIMILARITIES BETWEEN GLUTAREDOXIN AND THIOREDOXINS [J].
EKLUND, H ;
CAMBILLAU, C ;
SJOBERG, BM ;
HOLMGREN, A ;
JORNVALL, H ;
HOOG, JO ;
BRANDEN, CI .
EMBO JOURNAL, 1984, 3 (07) :1443-1449