MAGNETIC-PROPERTIES OF SEDIMENTARY GREIGITE (FE3S4)

被引:326
作者
ROBERTS, AP
机构
[1] Department of Geology, University of California, Davis
关键词
D O I
10.1016/0012-821X(95)00131-U
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
New data are presented here that document the previously poorly known magnetic characteristics of sedimentary greigite (Fe3S4). Several diagnostic magnetic properties can be used in conjunction to rapidly screen sediments to detect the presence of greigite. Such discriminants are necessary because greigite displays a similar (or higher) range of coercivities compared to most ferrimagnetic minerals and the commonly used method of alternating field demagnetization cannot be used to distinguish,between palaeomagnetic remanence components due to greigite and other ferrimagnetic minerals. Sedimentary greigite has high ratios of the saturation isothermal remanent magnetization to magnetic susceptibility (M(rs)/chi), which are accompanied by hysteresis ratios of M(rs)/M(s) approximate to 0.5 and B-cr/B-c approximate to 1.5 (M(s) is the saturation magnetization, B-c is the coercive force and B-cr is the coercivity of remanence). Greigite has no low-temperature phase transition, whereas the ferrimagnetic iron sulphide pyrrhotite undergoes a major phase transition at about 34 K, and unoxidized magnetite displays the Verwey transition at 118 K. Low-temperature measurements may therefore prove valuable in distinguishing between magnetite, pyrrhotite and greigite, although the absence of a low-temperature transition cannot be taken as definitive evidence for the presence of greigite. Greigite also displays characteristic high-temperature behaviour, with a major drop in magnetization between 270 and 350 degrees C. Determination of the M(rs)/chi ratio is an excellent means of rapidly screening sediments to identify stratigraphic intervals that may contain greigite. Subsequent low-and high-temperature analyses can then provide unambiguous identification of greigite and enable the evaluation of the presence of other magnetic minerals.
引用
收藏
页码:227 / 236
页数:10
相关论文
共 55 条
[1]  
[Anonymous], 1971, PRINCIPLES CHEM SEDI
[2]   ELECTRON-MICROSCOPIC STUDIES OF MAGNETOSOMES IN MAGNETOTACTIC BACTERIA [J].
BAZYLINSKI, DA ;
GARRATTREED, AJ ;
FRANKEL, RB .
MICROSCOPY RESEARCH AND TECHNIQUE, 1994, 27 (05) :389-401
[3]   FE3O4 AND FE3S4 IN A BACTERIUM [J].
BAZYLINSKI, DA ;
HEYWOOD, BR ;
MANN, S ;
FRANKEL, RB .
NATURE, 1993, 366 (6452) :218-218
[4]   SEDIMENTARY PYRITE FORMATION [J].
BERNER, RA .
AMERICAN JOURNAL OF SCIENCE, 1970, 268 (01) :1-&
[5]   SEDIMENTARY PYRITE FORMATION - AN UPDATE [J].
BERNER, RA .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1984, 48 (04) :605-615
[6]   EVIDENCE FOR A CHANGE IN THE PERIODICITY OF TROPICAL CLIMATE CYCLES AT 2.4 MYR FROM WHOLE-CORE MAGNETIC-SUSCEPTIBILITY MEASUREMENTS [J].
BLOEMENDAL, J ;
DEMENOCAL, P .
NATURE, 1989, 342 (6252) :897-900
[7]  
BONEV IK, 1989, DOKL BOLG AKAD NAUK, V42, P97
[8]   DISSOLUTION AND PYRITIZATION OF MAGNETITE IN ANOXIC MARINE-SEDIMENTS [J].
CANFIELD, DE ;
BERNER, RA .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1987, 51 (03) :645-659
[9]   THE REACTIVITY OF SEDIMENTARY IRON MINERALS TOWARD SULFIDE [J].
CANFIELD, DE ;
RAISWELL, R ;
BOTTRELL, S .
AMERICAN JOURNAL OF SCIENCE, 1992, 292 (09) :659-683
[10]  
Chikazumi S., 1964, PHYS MAGNETISM