TEMPORAL OSCILLATIONS IN NEURONAL NETS

被引:87
作者
ERMENTROUT, GB
COWAN, JD
机构
[1] Department of Biophysics and Theoretical Biology, The University of Chicago, Chicago, 60637, Illinois
关键词
Bifurcation theory; Neurobiology; Nonlinear integro-differential equations;
D O I
10.1007/BF00275728
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A model for the interactions of cortical neurons is derived and analyzed. It is shown that small amplitude spatially inhomogeneous standing oscillations can bifurcate from the rest state. In a periodic domain, traveling wave trains exist. Stability of these patterns is discussed in terms of biological parameters. Homoclinic and heteroclinic orbits are demonstrated for the space-clamped system. © 1979 Springer-Verlag.
引用
收藏
页码:265 / 280
页数:16
相关论文
共 19 条
[1]   BIFURCATION ANALYSIS OF REACTION-DIFFUSION EQUATIONS .3. CHEMICAL OSCILLATIONS [J].
AUCHMUTY, JFG ;
NICOLIS, G .
BULLETIN OF MATHEMATICAL BIOLOGY, 1976, 38 (04) :325-350
[2]   MULTIPLE EIGENVALUES LEAD TO SECONDARY BIFURCATION [J].
BAUER, L ;
KELLER, HB ;
REISS, EL .
SIAM REVIEW, 1975, 17 (01) :101-122
[3]  
CRANDALL M, 1976, HOPF BIFURCATION
[4]  
ERMENTROUT GB, 1978, LARGE SCALE ACTIVITY
[5]  
FIFE PC, UNPUBLISHED
[6]  
Hopf E., 1942, BER SACHS AKAD WI MP, V94, P1
[7]   BIFURCATIONS IN REACTION-DIFFUSION PROBLEMS [J].
HOWARD, LN .
ADVANCES IN MATHEMATICS, 1975, 16 (02) :246-258
[8]   APPLICABLE HOPF BIFURCATION FORMULA AND INSTABILITY OF SMALL PERIODIC-SOLUTIONS OF FIELD-NOYES MODEL [J].
HSU, ID ;
KAZARINOFF, ND .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 55 (01) :61-89
[9]  
KEENER JP, 1976, STUD APPL MATH, V55, P187
[10]  
KOPELL N, 1973, STUD APPL MATH, V52, P291